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PREFACE TO FIRST EDITION

The "Practical Physics for Degree Students” is designed to cover
the syllabi of the B.Sc. Pass and Subsidiary and B. Sc. (Engineering)
examinations of the different Universities of Pakistan. Our long
experience in teaching physics and conducting practical classes
has acquainted us with the various difficulties that the students
face in performing experiments. In this textbook attempts have
been made to guide the students so that they may proceed to
record data systematically and then correlate them to get the
results. Subject matter of the book has been presented in a simple
manner so that the students may independently perform the
experiments without the help of the teachers. At the end of each
experiment relevent questions and their answers have been
provided, thus clarifying the theoretical aspect of the experiment.
Tables are provided at the end of each experiment. However, it
should be remembered that they are purely suggestive and there is
nothing special about any particular form of tabulation. Tables of
physical constants and logarithmic and trigonometrical tables have
been provided at the end of the book for ready reference.

In writing this book we consulted different books on practical
physics specially those by Watson. Worsnop and Flint, Allen and
Moore, S Datta, K. G. Majumdar, Roy Choudhury, Ganguli, H. Singh,
J Chatterjee and K. Din. Various theoretical books have also been
consulted.

We like to thank Professor K. M. Saha, M.Sc. Head of the
Department of Physics, E. P. University of Engineering and
Techonlogy, Dacca, for his keen interest in the book and his
constant encouragement and guidance. We also like to thank our
colleagues Mr. T. Hossain. M. Sc. and Mr. Asadullah Khan. M. Sc. for
their various helps rendered during the preparation of this book.
We gratefully acknowledge the debt we owe to Mr. Nurul Momen.
M. Sc. (Dac), M. A. {Columbia) for many valuable and constructive
suggestions.

We also like to thank Mr. Hassan Zoberi of M/S. Zoberi and Pearl
for his active co-operation in bringing out this book. Thanks are
also due to Mr. Anwar Ali of the Department of Physics who helped
us in getting the manuscript typed within a short time.

The book has been hurried through the press and as such some
printing mistakes might have crept in inspite of our best efforts.
We shall gratefully welcome any suggestion which may help to
improve the book.

E. P. University of Engineering and
Technology. Dhaka.
Ist January, 1969

Giasuddin Ahmad
Md. Shahabuddin
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CHAPTER 1
INTRODUCTION

1.1 IMPORTANCE OF LABORATORY WORK

A student of physics should realise that the laboratory
work, popularly known as practical classes, is no less
important than the theoretical lectures. In performing an
experiment in the laboratory, one is required to revise
thoroughly the ideas and the principles involved in the
experiment which were explained by the teachers in the
theoretical classes, possibly long age. Thus practical classes
serve as a sort of revision exercises of the theoretical
lectures. Moreover, laboratory work makes a student
methodical, accurate, diligent and trained to rules of
discipline.

The overall aims of the physics practical programme are
to help the students learn
a to experiment i.e. measure unknown quantities and draw

conclusion from them.

b. to write scientific (or technical) reports and papers and
c. to use specialized methods of experimental measu-
rement.

1.2 ERRORS IN MEASUREMENTS

In determining a physical constant in the laboralory, il is
necessary to measure certain quantities which are related to
the constant in a formula. Measurement of these quantities
involves various errors which are enumerated below.

(a) Personal Errors: When recording an event, the same
person at different times and different persons at the same
time record it differently.. This is due to the personal
qualities of the workers. For example, different time keepers
in a sport are found to record different times of start and
finish. Inexperienced observers or observers not in a normal
state of health make errors of varying magnitude. Such
errors may be eliminated by taking mean of several
observations. '



2 Practical Physics

(b) Constant or Systematic Errors: Errors which affect
the result of a series of experiments by the same amount is
called the constant error. Faulty graduation of an instrument,
which is used in verifying certain physical laws, introduces a
constant error. In determining the value of g by simple
pendulum, the length of which is measured by a faulty scale,
the value obtained from a series of ocbservations would differ
by a constant amount from the true value. Such errors are
eliminated by different methods.

(i) In some experiments errors are previously
determined and corrections in the readings are made
accordingly. Thus, these e -rors cannot affect the final resul.
Examples of these errors are the zero-error in measuring
instruments such as screw gauge, slide callipers, end-errors
in a meter bridge elc.

(ii} In some experiments error is allowed to occur and
then eliminated with the help of the data recorded during
the experiment. In determining specific heat of solid or
liquid by the method of mixture, the loss of heat by radiation
is allwed to occur and then this loss is corrected for.

(iii) There are cases in which errors are eliminated by
repeating the experiment under different conditions. Thus
in an experiment with meter bridge in finding the null
point, a tapping error is introduced owing to the fact that
the pointer which indicates the position is not exactly
situated above the fine edge of the jockey which makes
contact with the bridge wire. This is eliminated by obtaining
two balance points after interchanging the resistance coils.

(c) Accidental Error: There are errors over which the
worker has no control. Inspite of all corrections and
precautions taken against all possible known causes, some
errors due to unknown causes occur which affect the
observations. Such errors are called accidental errors. Errors
in such cases are reduced by taking a number of observations
and finding their mean. By applying the theory of
probabilities, it can be shown that if the mean of four
observations instead of a single observation be taken, the

accidental error is reduced to L or % of the error that

Va

comes in with single observation.

U
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(d) Errors of Method: The formula with which the result
is calculated may not be exact and hence inaccuracy creeps
in the calculated result. Care should be taken to see that the
basis of calculation is exact and accurate.

(e) Parallax Errors: When a reading is taken along a scale,
straight or circular, the line of sight must be at right angles
to the surface of the scale. Due to carelessness in this
respect an error in reading is inevitable. This error in
reading due to looking at wrong direction is called error due
{o parallax. In order Lo avoid such errors the scale, straight
or circular, is often placed over a mirror. An image of the
object is formed in the mirror by reflection and the reading
of the object is taken without difficully.

() Level Errors: Instruments like a balance,
spectromrcle elc, require levelling before use.
These instruments are generally provided with levelling
screws. Using a spirit level and by adjusting the screws,
levelling is done. .

(¢) Back-lash Error: It occurs when one part of a
connected machinery can be moved without moving the
other parts, resulting from looseness of fitting or wear.
Generally this error develops in instruments possessing nut
and screw arrangements. With continued use, the screw and
the nut wear away due to friction and the space within the
nut for the play of the screw increases more and more. The
result is that when the screw is turned continuously in one
direction, the stud at the end of the screw moves as usual;
bul when rotated in the opposite direction the stud does not
move fpr a while. The error introduced on reversing the
direction of turning is called back-lash error. This is avoided
by turning the instrument, before taking any reading, always
in the same direction.

(h) Probable Error: Probable error means the limit within
which the true value of the constant probably lies. If x be the
arithmetic mean of a set of observations and a the probable
error, then the true value is as likely to lie within the range
x * a as outside it. If the observed values of the same quantity

u be xj, x2 ..... Xn, then m, the arithmetic mean of these
values, may be taken to be the nearest approach to the
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correct value of u. Let us now determine the limits within
which the errors of u may lie. If d be the arithmetic mean of
the numerical values of the deviations of individual
observations given by dj =(x;-m), da=(x2-m), .... dn=(xp-m),
then d will give the mean error and for all practical
purposes, u=m #* d.
- The probable error may be calculated as follows:
(i) Calculate the arithmetic mean.
(ii) Find the difference between the observed values
and the arithmetic mean. It is called the deviationd.
(iii) Calculate the average value of the deviation without
taking their signs in consideration. Call this value 8
the average deviation.

(iv) Divide & by Vn-1 where n is the number of

observations. o= 8/Vn-1 is the average deviation of
the mean. The probable error is 0.8 times this
value.

Example: Suppose that in determining the resistance of
a wire with a meter bridge the following vales are obtained
in ohms.

() 8.9, (i) 9.3, (iii) 8.2, (iv) 9.1, (v) 8.8, (vi) 9. The
arithmetic mean is 8.9. The deviations are 0,+0.4, -0.7, +0.2,
-0.1, and +0.1 respectively, On adding and disregarding
their signs, the value is 1.5 and their average value § is 1.5/6
=0.25

The probable error is 0.8 8/ Vn-1=0.2/ V5 —0.1. The
final value may. therefore, be written as 8.9 + 0.1 ohms.

1.3. DEGREE OF ACCURACY IN MEASUREMENT

When several quantities are to be measured in an
experiment, it is pertinent to examine the degree of
accuracy to which the measurement of the quantities should
be pushed. Suppose a physical constant u is to be
determined by measuring the three quantities x, y and z
whose true values are related to u by the equation,

u=xAyPB Lo (1)

Let the expected small errors in the measurement of the

quantities x, y, z be respectively 8 8y 3, s0 that the error in
uis du. It may be shown by simple calculation that the
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. su .
maximum value of —; sgiven by

(%)max=a5?x+b%+c§§— ........... 2)

In equation (2) a, b, ¢ are numerical values of the powers
and are taken as positive.

The quantities 5—3 % % 5—; are the proportional errors
in measurement of the respective quantities. When each is
multiplied by 100, the corresponding percentage of error is
given. As the errors in x,y and z may not be in the same
direction, the errors in u may be less than that given in
relation (2). The error in the quantities to be measured is
multiplied by the numerical value of the power to which
each quantity is raised as shown in the expression for
maximum error. It is, therefore, obvious that the quantity
having the highest power should be measured with a higher
precision than the rest.

For example, in determining the rigidity modulus (n) of a
wire of length [ and radius r, we use the formula

360 1gd mn (3)
1t21‘4 ((p)

The power is 4 for r, 2 for x and 1 for all other
quantities. The value of r is known. The value of r is Lo be
measured. If r be measured with an error not exceeding 0.01
mm, and if the value obtained for r is 0.50 mm, then the

n=

percentage of error is 51_6)( 100 = 2%. Iis contribution to the

maximum error in n will be 4 times this value i. e. 8%. This
shows that the radius of the wire should be measured with
high precision.

1.4 DRAWING OF GRAPHS

The resulls of experiments ofien form a series of values
of interdependent quantities of which one can be directly
controlled by experimental conditions and is called an
independent variable, and the other which undergoes a
consequent change as an effect is called dependent variable.
The relations of such quantities can be expressed in graph.
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(a) Representation of the variables along the axes. It is
customary that when the variables are to be plotted in a
graph, independent variables are plotted as the abscissae
horizontally from left to right and the dependent variables as
ordinate upwards. The variables plotted along an axis should
be written on the side of the axis. For example, in load
elongation graph, the elongation always changes with the
change of the load. Hence load is the independent variable
and the elongation is the dependent variable.
(b) Marking of origin. First select the minimum value of
the two variables. Take the round numbers smaller than the
minimum values as origins for the two variables. The values
of the two variables at the origin need not be equal. In
cerlain cases one or both of the co-ordinates of the origin
may be required to have zero value of the variables, even
though the minimum value of the corresponding variables
may be far above zero values.

Example: In determining the pressure co-efficient of a
gas, temperature is the independent variable and pressure is
the dependent variable.

A sample data is shown below:

Temperature in °C  Pressure in cms. of Hg
30 75.8
35 76.8

39.5 78.2
42.5 79.1
47.5 - 80.3
51.5 81.6
60.0 83.6
64.5 ' 84.7
69.0 85.5
72.5 86.7

Here the minimum values of temperature and pressure are
30°C and 75 cms of Hg respectively. As the value of pressure
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at O°C comes on the formula, the value of the origin for
temperature is chosen to be O°C. Therefore, the value of the
origin for temperature should be O°C (Fig. 1.1) A

(c) Selection of units along the axes. First determine the
round number greater than the maximum value of the two
variables. Then determine the difference between this round
number in respect of each variable and its value at the origin.
Divide this difference by the number of smallest divisions
available along that axis of the graph paper. The quotient
{hus obtained gives the value (in the unil of the variable
quantities) ol the smallest division along the axis.

(d) Marking of data along the axes. After marking the
origin and choosing the unit, put down the values of the
quantity corresponding Lo each large division mark on the
squared paper. These values should be integers, tenths or
hundredths, but never bad fractions.

(e) Plotting. Then plot the experimental data. Mark each
point by a small dot and surround it by a small circle or put a
cross. Co-ordinates of the point need not be noted unless it
is required for quick reference. Much writing makes the
graph look clumsy.
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() Joining the points to have the graph. Using a fine
pencil, draw the best smooth curve through the average of
the points. One or two points far away from the curve may be
ignored (Fig. 1.2). They are incorrectly recorded. See that
the curve touches the majority of the points and other points
are evenly distributed on both sides of the curve. When it is a
straight line graph, draw it with the help of a scale taking
care to see that it passes through the majority of the points
(Fig. 1.1).

(¢) Finding the value from the graph. If it is required to
determine the value of one variable corresponding to the
value of the other, proceed as follows: suppose that the value
of the ordinate is to be determined corresponding to the
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0

0 20 40 60 80 100 120 140 L
Load on each pan in gms ——

Fig 1.2

giv-en value of the abscissa. From the given point of the
abscissa, draw an ordinate to cut the curve at a point. From
this point of the curve, draw a horizontal line to cul the y-
axis at a point. The value of y-axis at this point gives the value
of the ordinate.

Similarly for a given value of the ordinate, the
corresponding value of the abscissa can be determined.
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(h) Graphs serve both illustrative and analytical purposes.
A graphical presentation usually conveys much more
information than tabulated numerical values though it is not
as precise. Graphs help identify regions of interest as well as
the presence of systematic errors. They also emphasize
readings that do not agree with others or with the theory.
Graphs indicate the overall precision of the experiment. A
primary function of graphical analysis is to give an empirical
relation (based on observation rather than theory) between
two quantities and to indicate the range of validity of this
relation. This has its most practical application in plotting
calibration curves for experimental equipment. In a similar
way a graphical presentation is the best way of comparing
experimental results with predicted theoretical behaviour
and the range over which agreement is obtained.

1.5 EXPERIMENTAL GUIDELINES
Planning:
a. Try to anticipate everything that will occur during the
course of an experiment.
b. Derive the particular relation for the combination of
independent random errors in the final result. Tentatively
identily the variables with dominant error contributions.
c. Outline comprehensive survey experiment that will indi-
cate any changes or modifications needed in the equipment
Or measuring process.
d. Draft a lentative programme for the performance of the
experiment with a detailed procedure for critical or
complicated measurements. Put special emphasis on the
measurement of variables with dominant error contributions.

Preparation:

a. Test and familiarize yourself with each instrument or
component of the apparatus separately before assembling it.
Calibrate the instruments where necessary.

b. Assemble the equipment, test that it is functioning
properly and check all zero settings.

L
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c. Perform a survey experiment running through the com-

plete procedure when possible. Use this rehearsal

(i) to identify any changes or modifications needed in the
original equipment or experimental plan.

(ii) to find the regions of interest in the measured variables
and suitable instrument scales to investigate these
regions.

(iii) to distinguish systematic errors and minimize their
effects.

(iv) to determine the variables with the most significant of
the random error contributions. Maximize the
sensitivity of these measurements and

(v) to identify the variables with insignificant error
contributions under optimum experimental conditions.
The errors in these variables can be estimated.

d. Finalize a detailed experimental procedure.

Performance:

a. During the course of an experiment continuously monitor
zero settings, environmental conditions, and the data being
taken. The procedure should have built in checks to insure
that all conditions remain constant during the course of an
experiment.

b. To retain control over experimental conditions scientific
discipline is necessary. This involves following a systematic
sequence of steps, each being a consequence of planned
necessity. Avoid the tendency to rush through any sequence:
this can be very tempting when the investigation is relatively
unimportant.

c. It is essential to conirol the influence of various indepe-
ndent variables. Always try to isolate each independent
variable to see how the result depends on it while everything
else is held constant. '

d. Whenever possible perform the experiment under
equilibrium conditions where the results are consistent
when the experiment is worked backwards and forwards.

e. When keeping a Laboratory Notebook keep a detailed
record of everything that happens as it happens. Try to pro-
duce a running account that is accurate, complete and clear.
(i) Record experimental details and data directly into a
permanent record— do not write on scraps of paper.

(ii) Record all raw data directly into prepared tables.

—
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(iii) Do not erase or overwrite incorrect entries, cross them
out with a single line and record the correct entry
beside it. '

(iv) Label all pages, equations, tables, graphs, illustrations,
etc.

(v) Distinguish important equations, results, comments,
etc. from less important details by emphasizing the@.

(vi) It is advisable to write on only one side of a page during
the first run through and to leave space in the text
where details, tables, comments, calculations, etc. can
be added later at the most relevant points.

PRESENTATION

a. Always be precise in what you write. A precise statement
will leave no doubt as to what you mean. Avoid vague
expressions such as almost, chout, etc.
b. Scientific statements should be concise, so use a few
carefully chosen words rather than excessive description.
Say as much as possible in as few words as possible.
c. Claritly is achieved by using precise, concise statemepts
that are simply worded and presented in the most logical
sequence. Cross-referencing, tabulation of results, ‘illustr—
ations, graphs, emphasis, repetition and summarization are
all aids to clarity.
d. For the purpose of laboratory work two note-books— one
fair and another rough, should be used. While performing the
‘experiment in the laboratory, all observations, all difliculties
experienced, calculation and rough works shogld be
recorded in the rough note-book. Report on experiments
should be prepared and written in the fair note-book in the
following standard format:
L Write the name of the experiment in bold characters at
the top.
ii. Write the date of the experiment at the top left comer.
iii. Theory: Here give the brief outline of the essential
physical principles and theoretical concepts necessary
for interpreting the experimental resullts. Only the
‘mathematical relations used in the calculations are
necessary: their derivation if given elsewhere, should
he referred to but not given in detail. Explain clearly
the symbols used in the working formula.
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. Apparatus: Give a list of apparatus required for the
experiment.

u Description of the apparatus: Give a short description of
the apparatus. Give a neat diagram on the blank page to
the left. Pictures that are purely illustrative should be
simple, schematic, and not necessarily to scale ("not to
scale” should be indicated)

i Procedure: Record here what you did in performing the
experiment.

vit..  Results: Record all the data in the order in which you
took them. Whenever necessary, they should be
recorded in a tabular form. Graphs should be drawn if
required. The graphs should have specific title,
reference label, and both name and units on each axis.
Unless there is a reason not lo, the graph scale should
be choosen so that the plotted readings are spread
evenly over the range. Calculations should be shown on
the blank page to the left. Final result of measurement
should be written at the end in proper units.

viii. Discussion: A short discussion on difficulties
experienced during the experiment, precautions,
sources of error, and accuracy of observation should be
given.

1.6 A FEW GENERAL INSTRUCTIONS

a. In order to derive full benefit from the laboratory work, it
is essentiall that the student must know his work Jor a
particular day beforehand and must carefully prepare the
maltter at home.

b. Coming to the laboratory and getting the apparatus for
work, each part of which must be studied and understood.
Hence preparation at home will make one grasp the idea
easily.

¢. The observations must be recorded as soon as they are
laken without the least delay. The reading may be forgotten
in a short time.

d. Every arithmetical figure used in recording an observation
must be written very distinctly so that no doubt may arise as
to its identity at the time of calculation. _

e. The calculations made to arrive at the final result must be
shown. This may be done on the left page of the laboratory
note-book.

.
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CHAPTER 11

GENERAL PROPERTIES OF MATTER
SOME LABORATORY INSTRUMENTS

2.1. THE SLIDE CALLIPERS

Slide callipers is used for the measurement of the length
of a rod, the external and internal diameters of a cylinder,
the thickness of a lens, etc.

A slide callipers consists of a nickel plated steel scale M
usually graduated in centimeires and millimetres on one
edge and in inches and its subdivision on the other edge
(Fig. 2.1).

Fig. 2.1
This is the principal scale. A jaw A is fixed at right angles at
one end of the scale. The other jaw B can slide over the scale
and can be fixed at any position by means of a screw T. This
movable jaw carries with it iwo vernier scales V, one on each
side, corresponding to the two main scales. The inner edges
of the jaws are so machined that when they touch each other
there is no gap between them. Under this condition, the
zero of the vernier should coincide with the zero of the main
scale. With such a correct instrument, when the jaws are
separated, the distance belween the zero of the vernier scale
and the zero of the main scale is equal to the distance
between their edges. The body, of which the length is to be
measured, is placed between the two jaws so as to exactly fit
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in. The readings of the main and vernier scales gives the
length of the object.

Instrumental Error: When the vernier zero does not
coincide with the main scale zero, there is an instrumental
error or zero error. In such a case, the actual reading of the
scale does not give the true length of the body. There may be
two types of zero errors:

(a) The zero of the vernier may be in advance of the zero
line of the main scale by an amount x mm. This means that
in place of zero reading the instrument is giving a reading +x
mm. On placing the body between the jaws if the scale
reading be y mm, then the actual length of the body is (y - x)
mm. In this case the instrumental error is + ve and must
always be subtracted.

(b) When vernier zero is behind that of the main scale by
an amount x mm, the instrumental error is - ve and must be
- added to the actual reading to get true length of the body.

Inside and Outside Vernier with Depth Gauge. Some
instruments are provided with arrangement to measure the
internal diameter and the depth of a cylinder (Fig. 2.2).

R e i i i, o] A
9 10 Ul 12 I3 14 15 16 7 = (3)

h_d_.l

Fig. 2.2. Vernier callipers. The parts marked A form a rigid unit, which is
free to move relative to the rest of the instrument when the
spring-loaded button B is pressed. The three distances marked
d are equal and are read off from the vernier scale. (1) gives the
diameter of a rod. (2) the diameter of a hole and (3) the depth of
a blind hole.

Such an instrument is provided with two lower and two

upper jaws. The scales are so graduated that when the

vernier zeroes coincide with the main scal zeroes, the edges
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ol the lower and upper jaws are in contact. Through a
strivghl groove cut along the entire length of the back side
ol the bar, a uniform steel rod can slide. The other end of
the rod is rigidly fixed to the vernier attachment and the
length of the rod is such that when vernier reading is zero,
the end of the rod coincides with the end of the scale bar.

To measure the external diameter of a cylinder, rod or
ring, the lower jaws are used and the procedure is the same
as that of the ordinary callipers.

To measure the internal diameter of a cylinder, pipe or
ring the upper jaws are inserted inside the cylinders, etc.,
and then the movable jaw is moved out till the edges touch
the inner walls of the body and the usual readings are taken.

To measure the depth of a hollow body, the instrument is
put in a vertical position and allowed to rest at the end of
the scale on the rim of the body. The movable jaw is slided
downward till the end of the rod touches the inside bottom
of the body. Then the usual reading is taken which gives the
depth of the body.

The instrumental error, if any, must be taken into
consideration in all the measurements.

Vernier constant.

Vernier constant {s a measure.of the difference in length
of a scale division and a vemnier division in the unit of the
scale division. '

Let the value of one small division of the main scale = 1
mm and let 10 vernier division be equal o 9 scale division.

10 vernier division = 9 scale division
, . =9 .

1 vernier division 10 scale division.

vernier constant (v.c)=1s.d.-1v. d.

9 =1 -1
ls.d-ms.d. 10s.d. 1Oxlmm

O0.lmm = 0.01 cm.

EXPT. 1. TO MEASURE THE LENGTH OF A ROD WITH A
VERNIER CALLIPERS.

" Theory :If s be the length of the smallest division of the
main scale and v that of a vernier division and if n-1 division
of the scale be equal to n division of the vernier, then
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(n-1)s =nv.
_n-1
OF U= "0 S e, (1)
_n-1__1
Hence s-v = ST S e (2)

The quantity (s - v) is called the vernier constant which
is a measure of the difference in length of a scale division
and a vernier division in the unit of the scale division. So if L
be the reading upto the division of the scale just before the
zero mark of the vernier and if x be the number of the
vernier division, which coincides with a division on the
scale, then the length of the rod which is put between the
jaws of the callipers is equal to

1
L+xns

While measuring the length of the rod zero error must be
considered.

Apparatus : A slide callipers and a rod.

Description of the Slide Callipers : See the description 'of
Fig. 1.

Procedure : (i) Determine the value of the smallest
division of the main scale (both in centimetre scale and inch
scale) with reference to a measuring scale.

(ii) Slide the vernier scale over the main scale so that the
zero line ol the vernier scale coincides with a main scale
division. Find out the main scale division with which the last
vernier division coincides. Counl the total number of
divisions in both vernier and main scale between these two
points of coincidence. Record this. To be sure, these
numbers may be rechecked by moving the vernier to some
other position. Then calculate the vernier constant.

(iii) Place the two jaws of the callipers in contact. If the
vernier zero coincides with the main scale zero there is no
instrumental error. If they do not coincide there is an
instrumental error. Determine the instrumental error,
positive or negative, as described previously.

(iv) Draw out the movalbe jaw and place the rod between
the jaws. Make the two jaws touch the ends of the rod,
taking care to see that they are nol pressed too hard or two

L
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loose. Take the main scale reading just short of the vernier
zero line and count vernier division between the vernier
zero line and the line which coincides with any of the main

scale division. The product of this vernier reading and the
vernier constant gives the length of the fractional part. The
sum of the main scale reading and the fractional part (taking
account of the zero error), gives the length of the rod. Take
at least five readings and arrange in a tabular form.

Results :
(tA) Vernier Constant.

(a) Centimetre Scale. The value of one small division of
the main scale = 1 mm.

10 v. d = 9 s.d (say)

9
lv.d= 10 s.d .
Vernier constant (v.c.) = Is.d - 1vd=1s.d. - ﬁs.d_

=11—0 s.d. =0.1 mm. = 0.01 cm.
(b) Inch Scale. Value of one small division of the main

scale = -2% inch (say).
10 v.d. = 9 s.d.
9
lovd = 10 s.d.

v.c. = 1s.d -1v.d. = Isd. - 19—0 s.d. = 11_0 s.d.= “11.6 X .2!6 inch
= 0.005 inch.

(B} To determine the Instrumental Error.

()} Positive Error. When the jaws are in contact, the
vernier zero is in advance of the zero line of the main scale
and suppose that the fourth vernier division coincides with
some line of the main scale. Then the error is 4 X vernier
constant = 4x 0.1mm= 0.4 mm. or 4 X 0.005 inch = 0.02
inch,

This instrumental error must be subtracted {rom the
apparent length of the body.

(h) Negative Error. When the jaws are in contact, the
vernter zero is behind that of the main scale zero. Suppose
thid the 4th line ie. the 6th line of the vernier counted [rom

A
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the 10th vemier division coincides with some division of the
main scale. Then the error is 6 X vernier constant = 6 x0. 1
mm.= 0.6 mm.

This instrumental error must be added to the apparent
length of the body.

(C) Length of the Rod.

Main ‘ ) Excess Instru- Corre-

Scale | No.of | scale | Vernier{ V.C by Total Mcan mental cted
obs. {a) scale cm. | vernier length length error length
cm. ib} bxVv.C = {a+d) =lcm. {te) L= (lte}

=d em. cm. cm.

Centi

nietre

inch 2

5

Note. If the radius and cross-section of a rod is to be
measured, the diameter of the rod is to be determined at
two mutually perpendicular direction of each of three
different positions of the body. Radius r=Diameler/2, Cross-
Section= rr? sq. cn.

Discussion :
(i} The jaws must not be pressed too hard or too loose.

2.2 THE SCREW GAUGE

The screw gauge is very suitable for the measurement of
small length such as the diameter of a wire. It consists of a
U- shaped steel frame having two parallel arms at the ends
(Fig. 2.3).

One arm carries a solid stud A with a carefully machined
terminal. The other arm C acts as a nut in which a screw is
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worked by a drum D. The drum has a bevelled end with a
circular scale engraved on it. This circular scale contains 50
or 100 divisions. The drum D when rolated, covers or
uncovers Lhe scale. For every turn of the drum, it moves
through a fixed distance called the pitch of the screw. The
end face B of the screw is parallel to the face of the stud A.
At the end of the drum there is a friction clutch E. When the
sluds A and B touch each other, the clutch would no longer
rotate the drum but would slip over il.

Fig. 2.3

Pitch of the Screw Gauge. When the screw works in the
nut the linear distance through which the screw moves is
proportional to the amount of rotation given to it. The edge
of the bevelled head of the drum is brought on any
graduation of the linear scale and the circular scale reading
is marked against the reference of the linear scale. Circular
scale is rotated until the same circular scale mark comes
against the linear scale. The circular scale has been rotated
through one complete turn and the amount ol linear
movement of the collar on the linear scale is the pitch of the

screw. If p mm be the pitch of the screw and if there are n
P

L is called

circular divisions on the micrometer head, then

the least count of screw gauge.

Let the distance along the linear scale travelled by the
circular scale when it is turned through one [ull rotation be
Imm = 0.1 c¢m (say). This is the pitch of the screw. If the
number of divisions in the circular scale = 100 (say) then
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Leasl count = Pilch
: ~~ Number of divisions in (he circular scale

= '100“1) cm= 0.001 cm.

Instrumental Error. It is sometimes found that circular
scale zero and the linear scale zero do nol coincide when
the studs are in contact. The circular scale zero may be in
advance or behind the linear scale zero by a certain number
of division n of the circular scale. If the least count be ¢,
then the instrumental error is either + nc 0r - nc according
as the circular scale leads or lags as in vernier scale. When
the position of the circular scale zero is in advance of the
main scale zero, the error is to be subtracted and in the
other case it is {0 be added to the apparent reading.

Back-lash Error Due to the continued use of the
instrument the screw and the nut wear away and the space
within the nut gradually increases. In such a case when the
screw is turmed in one direction, the stud moves as usual,
but when it is rotated in the opposite direction the stud
does not move for a while. The error that is thus introduced
on reversing the direction of turning is called the back-lash
error. This error can be avoided by turning the screw in the
same direction before taking any reading.

EXPT 2. TO MEASURE THE DIAMETER OF A PIECE OF
WIRE WITH A SCREW GAUGE AND TO F IND ITS AVERAGE
CROSS-SECTION.

Theory : The least count of the screw gauge is the pitch
divided by the number of divisions in the circular scale. The
diameter of the wire just fitting between the studs is equal
to the reading in the linear scale plus the value of the
circular scale reading.

Apparatus : A screw gauge and the wire.
Description of the Apparatus : See (he description of fig. 2.3.
Procedure : (i) In reference o a metre scale find the value
ol the smallest division of the linear scale, and read the
number of divisions in the circular scale. By turning the
screw, bring the bevelled end of the drum carrying the
circular scale on any graduation of the linear scale and give
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the scerwe a complete turn. The distance through which the
cdge moves is the pilch of the screw. Calculate the least
count by dividing the pitch by the number of divisions in the
circular scale. |

(ii) Find out the instrumental error by turning the screw
head until the studs are in contact and taking the reading of
the circular scale against the reference line of the linear
scale. If the zero of circular scale coincides with the zero of
the linear scale there is no zero error. The number of
divisions in advance or behind the zero of the linear scale
multiplied by the least count gives the zero error. In the
former case the error is positive and (o be subtracted from
the observed reading and in the latler case the error is
negative and 1o be added to the observed reading.

(iii) Place the wire breadth wise in the gap between the
studs. By slowly turning the friction clutch in one direction
make the studs just touch the specimen. Note the reading of
the last visible division of the linear scale and that of the
circular scale which is opposite the baseline. At each place of
the wire take two perpendicular readings. Take readings at
several places of the wire.

(iv) Calculate the mean value of the readihgs, add or
subtract the instrumental error.

Results :

(A) Least Count.

Value of the smallest division of the linear scale = 1 mm=
0.1 cm (say)

Pitch of the screw = 1 mm = 0.1 cm (say)

No. of divisions in the circular scale = 100 (say)

Least count of the instrument

Pitch
~ No. of divisions in the circular scale

- »30(')—1) cm= 0.001 cm.

(13) Instnmental Error.
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Table 1
Position of No. of | Main | Circular Value +ve Mecan | Instrumental
the collar | readings { scale | scale of or reading "error
circular -ve
scale error
1 [¢] .+ve/
In advance 2 -ve
of 3
behind 4
linear 5
ZCro

(C) DataforDiameter.

Table 2

No. of Linear Circular Least Value of Total Mean Instru- Corrected

readings scale scale count circular | readings mental diameter
reading | divisions scale error
dlvléions
cm cm cm. cm cm cm cm

1 (a)

{b)

2 (a)

[(@) and (b) are mutually perpendicular readings]

Radius, r = Diargeter

Area of cross-section = mr2 = ............. sq. cm

Discussions : (i) Back-lash error is to be avoided by
turning the screw in one direction.

(ii) Care should be taken to see that the studs just touch
the wire. Tightening will injure the threads.

(iii) Mutually perpendicular readings should be taken at

each position of the wire to avoid error due to the wire not
being uniformly round.
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2.3 THE SPHEROMETER

A spherometer is used for the measurement of the
thickness of a glass plate or the radius of curvature of a
spherical surface. It works on the same principle as that of a
screw gauge. It consists
of a frame-work with
three equi-distant poin-
ted steel legs A, B and C
(Fig. 2.4). At the center
of the frame there is a
nut in which a fine
screw with pointed end
P works and forms an
adjustable centre leg.
The screw supports a
round gradualed disc D
at its upper end. A
milled head M is rigidly
fixed with the gradu-
ated disc. A small scale
S, ususlly graduated in
millimeter, is fixed to
one of the outer legs A
at right angles to the
graduated disc. The axis ,
of the screw is perpen- Fig. 2.4
dicular to the plane defined by the lips of the three outer
legs. In an accurale instrument the zero line of the main
scale and zero of the circular scale should coincide when all,
the four legs just touch a plane surface. But due to long use,
the edge of the disc is below or in advance of the main scale
zero when the four legs stand on the same plane, involving a
posilive or negative instrumental error, depending upon the
dircection in which a subsequent measurement is to be made.

The least count of the spherometer is equal to the pitch
ol'the central leg divided by the total number of divisions in
the eircular scale. (See Art. 2.2) :
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EXPT 3. A. TO DETERMINE THE THICKNESS OF A GLASS
PLATE WITH A SPHEROMETER.

Theory : The thickness of the plate is equal to Lhe
difference in readings of the spherometer when its central
leg first touches the plane sheel on which the outer legs rest
and then touches the upper surface of the plate.

The least count of the spherometer is equal to the pitch
of the central leg divided by the total number of divisions in
the circular scale.

Apparatus : A spherometer, a piece of plane glass (base
plate) and a thin glass plate (test plate).

Description of the spherometer : See description.

Procedure : (i) Determine the value of the smallest
division of the vertical scale. Rotate the screw by its milled
head for a complete turn and observe how far the disc
advances or recedes with respect to the vertical scale. This
distance is the pitch of the instrument. Divide the pitch by
the number of divisions in the circular scale. This gives the
least count of the instrument.

(ii) Place the spherometer upon a plane glass piece (base
plate) and slowly turn the screw so that the tip of the central
leg just touches the surface of the glass. When this is the
case, a slight movement of the screw in the same direction
makes the spherometer legs develop a tendency to slip over
the plate.

(ii) Take the reading of the main scale nearest Lo the
edge of the disc. Take also the reading of the circular head
against the linear scale. Tabulate the results. Take five such
readings and take the mean value.

(iv) Now raise the central screw and put the glass plate
of which the thickness is o be measured belween the base
plate and the central leg.

(v} Turn the screw head again till it just touches the

plate. Take the reading of the main and circular scales.

(vi) By moving up the central screw, slightly shift the
position of the glass plate and take reading again for this
position of the plate. Thus go on taking reading five times.
Take the mean value.
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(vii) The difference of the two mean values gives the
thickness ol the glass plale.

(If the spherometer is old and if the plane of the disc
slightly oscillates as it rolates, it is proper Lo count only the
total number of circular scale divisions passed through from
the initial to the final stage, see alternate method).

Results :

[A) Calculation of Least Count.

The main scale is graduated in millimetres (suppose).
Pitch of the micromeler screw= 0.5 mm = 0.05 cm

No. of divisions in the circular scale = 100

.05
Least count of the instrument = (i(())O cms = 0.0005 cms

(B) Data for Thickness.

Linear Least Excess by Total Thickness
Readings 1\0 of scale Circular | count circular reading Mean
on obs. 1 scale L scale l+nxl cms
cms n cms (nxL) cms cms

cms

Base plate 1

Glass plate 1

B. Alternate method of measurement of thickness.

Form continued use, the parts of the spherometer wear
out and thrown out of adjustment. For such an old
instrument, the following method is convenient.

(i) Find the pitch and least count of the spherometer as
usual.

(i} Now place the spherometer on the base plate and
raise the central leg sufficiently.
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(iii) Place the tesl plate under the central leg and with
the help of the milled head screw, bring it down until it just
touches the test plate. Note the division of the circular scale
against the linear scale.

(iv) Carefully take away the test plate without disturbing
the relative position of the spherometer and the base plate.
Screw down the central leg slowly and count the number of
rotations of the circular head, till the central leg touches the
base plate.

The tolal count is to be done by two instalments—by the
number of complete revolutions of the disc and the
difference of initial and final disc readings.

(v) Repeat the observation at least five times and tabulate
the results.

Reaults :
(C) Calculation of Least Count (See 3A)

No.of Revolutions Disc reading LC
No.of | complete | equivalent Least X Thickness | Mean
obs, revolu to Initial | Finat | Differ | count disc t

tions cm ence cm reading

[ N

Note: If the disc rotates in the clock-wise direction in the
descending order of the division marks on it, and if
after n complete rotations, 70 be the initial reading
and 90 be the final reading, then the difference in
disc reading is (100+70) - 90 = 80.

C. To measure the radius of curvature of a spherical
surface with a spherometer.

Theory : When all the four legs of a spheromeler are
made to touch the spherical surface, the radius of curvature
of the spherical surface is given by
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@  h

R=6n*2
where a is the mean distance between the outer legs /of the
spherometer and h the height of the central leg above or

below the plane through the tips of the outer legs.

In the above formula, a is, in fact, the length of the side
of the equilateral triangle formed by the three legs of the
spherometer (Fig. 2.5). Let x denote OB, the radius of the
circumscribing circle. Then, if OD be at right angles to BC,

P
Curged *"
.7 B [+ 8 surface

-~
4 ~
I’ S
r'd N

\
,’ Circle of 's \
Curvature \‘

Q

.

Fig. 2.5a Fig. 2.5b
a _X
BD = b} and OD = 5

The angle OBD is 30°. Therefore, g: x cos 30°.

—
., a_ N3 2_ 5.2 -
Le, 5 =X. 75 ora“=38x¢......... {i)

To find the radius of curvature R, we consider a section
of the sphere by a plane through its centre and through the
line BO in Fig. 2.5a. Thus we obtain Fig. 2.5b. in which only a
portion of the circle of curvature is shown. If the diameter
PQ meets this circle again in S (not shown in Fig. 2.5b), then

QS = QP = R and lel us take OB=0OB’' = x and OP=h. We
know that OS.0OP=0B.OB’

Hence (2R - h) h = x2 or 2Rh = x2 + h?

x2 h
orR=%p+73
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(d) Raise the beam [ully when equilibrium is nearly
oblained and the poinler oscillates. Lower the beam every
time the small weights are added for final adjustments.

(e} Having weighed a body, count the weights while they
are on the scale pan and enter them in the note-book. Then
remove them one at a time to their places in the box.

(/) While determining the balance point, close the door of
the balance case to preven! disturbance due to air draught.

(g) Always close the door of the balance case and the
weight box after the experiment is finished.

2.5 TRAVELLING MICROSCOPE (ALSO KNOWN AS VERNIER
MICROSCOPE).

Travelling microscope, also known as Vernier
microscope, is used in making large number of accurate
measurements of lengths in the laboralory. There are various
forms of the instrument, one of which is shown in Fig. 2.7.

It consists of a microscope which is mounted on a vertical
pillar so that it can slide up and down along the scale S; by a
rack and pinion arrangement. The vernier scale V) slides
with the microscope and serves to determine ils position.
The vertical scale with the microscope can move aboul
within a groove made on a horizontal base provided with
levelling screws and can be fixed at any position by
tighlening a screw. On the base just at the border of the
groove there is a similar scale Sg. The movable base of the
microscope is provided with another vernier Vg. The bases
of some instruments are provided with spirit level. The
position of the microscope is changed by rack and pinion
arrangement. For finer adjustment use is made of the scrwes
T; and T4. The distance through which the microscope
moves vertically or horizontally can be read from the scales
S| and Sy with the help of the verniers V) and Vg moving
wilh the microscope. The microscope can be fitted about a
horizontal axis, so that ils axis can be either vertical or
horizontal or can make any angle with them. This allows Lhe
microscope being focussed on the object which is being
measured. Cross-wires are [itted in the eye-piece which can
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shde in and out so that these cross-wires can be focussed
Tlu- microscope can be focussed on the object with thé
locussing screw, providing a rack and pinion motion parallel
lo the axis of the microscope. In measuring the length of an

Fig. 2.7

objeet, the object is placed on the base of the instrument
and parallel Lo the scale S,. The cross-wires in the eye-piece

are locused and the nlicroscope is moved so that the

objective is just vertically over one end of the object. By the
vcrlicql movement ol the microscope, it is focussed on the
end of the object and readings on the scale S, and vernier
Vy are taken. The microscope is then moved to the other
end of the object on which it is focussed and again readings

on by and Vy are taken. The difference of these two readings
rives the length of the object.
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In measuring the distance belween (wo points, the
microscope is focussed first on one of them. It is then
shifted till it is focussed on the other, the line of joining the
two points being. adjusted parallel to the direction of motion
of the microscope. The difference between the readings for
the microscope positions in the two cases gives the distance
required.

The instrument can be used to measure both horizontal
and vertical distances.

For measuring small lengths, microscopes are provided
with finely graduated scales called micrometer scale placed
at the common focus of the eye-piece and the objective.

To measure the value of one division of the micrometer
scale, place a finely graduated scale on the base of the
microscope. Focus it and couni the number N divisions of
the micrometer scale covered by n divisions of this scale.

Then one division of the micrometer scale = ﬁ division of
the graduated scale.

To measure the length of a small object, focus the
microscope upon the object and note the number (d) of the
division of the scale covered by the image. Then the length
of the object is d multiplied by the length corresponding to
one division of the micrometer scale.

2.6. CATHETOMETER

A cathetometer is an instrument for accurately
determining vertical length about a metre or so. It consists
of a vertical column AB fixed Lo a heavy metal sland in such a
way that it can be made to rotate about a vertical axis, the
rotation being limited by two adjustable stops (Fig. 2.8)

The column and the metal stand are provided with
levelling screws at the base. Along the column a telescope T
can be moved, the axis of which is horizontal. The column
has a scale engraved along one face. The telescope is
supported by a carriage C which can slide along the column,
a second carriage D sliding along the same column being
connected with the carriages which support the telescope
by a micrometer screw E. This carriage D can be clamped to

h__—&: C e S . smeme e —— A .
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the column and then by turning the screw E the telescope
can be moved up or down through a small distance and so ils
position adjusted. The position of the carriage C can be read
oll on the scale on the column by means of a vernier V. The
telescope is provided with a spirit level L on the top which
serves to show when the
axils of the telescope is
horizontal. The instrum-
enl is levelled with the
help of the levelling scre-
ws al the base and the
screw below the teles-
cope in the telescope
carriage. The telescope is L
provided with cross-
wires. In measuring the et A T
distance between two
points, the horizontal

wire is usually made to 0 By
yﬁ

=
Y .ﬂr%d

=

3

coincide with the images E--
of the points one after '
another and its position ::
noted from the vernier. ’
The difference between :
the two posi-tions gives
the desired distance.’
Using the Cathetometer.
(i) Before using the cath-
elometer for measuring
distances it is necessary
to level the cathelomeler
so that its column is Fig.2.8

vertical and the telescope axis is horizontal. To do this, turn
the column till the telescope is parallel to the line joining
two ol the levelling screws of the base and by turning these
serews bring the bubble of the telescope level half-way back
lo the centre. Turn the screw attached to the telescope
cartlage to bring the bubble fully 1o the centre. Next Lturn the
vertical column with the telescope carriage through 180°. If
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Results :
No. of. obs load on pans Readings of the pointer Mean reading Sensitvity
e e _ _ : 224
£ft Right Lett Right Left Right i
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Oral Questions and their Answers.

1. Why are the beam and the pans of a balance supported by knife-
edges on agale plate?
In order to diminish the friction of working parts of support
and suspension

2. When will the beam of the balance be horizontal?
When the moment of the weight of the body to be weighed and
that of the standard ‘weight’ about the fulerum are equal.

3. What are the requisites of a good balance?
Must be truely sensitive, stable and rigid (See a text book}

4. What is sensitivity of a balance?

See theory Expt. 5.

Why are the weights put on the right-hand pan and the body on

the left-hand pan?

The weights are lo be varied and for convenience of pulling

them, they are placed on the right-hand pan.

6. Distinguish between mass and weight. How do they vary?
Mass (m) of a body is the quantity of matter contained in the
body. It is an invariable quantity.
Weight (1n.g) is the force with which the body is altracted by
the earth towards its centre. As the acceleration due to gravily
changes from place to place, -the weight varies. It varies from
place to place. It decreases when the body is taken (i) at high
altitude (ii) in deep mine (iii) from pole to equator. At the

o]

centre of the earth it vanishes.

7. What ts measured by a balance—mass or weight?
Here mass is measured by comparing it with that of the
standard 'weights'. Only the spring balance gives the weight,
but the comimon balance does not.

EXPT. 6. TO DETERMINE THE YOUNG'S MODULUS FOR
THE MATERIAL OF A WIRE BY SEARLE'S APPARATUS.

)QTheory . Provided ihe distortion of a body is not too great,

it has been found thal the amount of distortion is directly
proportional to the magnitude of the-forces producing the
distortion. This fact is known as "Hooke's 1aw".)lf a wire of
natural length [is stretched or compressed a distance x by a
force I, experiment reveals that ' :
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Fig. 2. 17.

Mean value of ™ ___ as obtained from the graph = ....
(93 - ¢7)

Acceleration due to gravity = ...... cm/sec?

n=3%00-lgd  _ m

2 rt ((po2 - q)(i)

...... dynes/sq.cm.

Discussions : (i) The length of the wire is to be measured
from the point of suspension upto the point at which the
pointer is attached.

(ii) The radius of the wire should be measured with
maximum possible accuracy.

(iiij The threads supporting the hangers should be

parallel to ensure that the arm of the couple is equal to the

diameter of the fly-wheel.

Oral Questions and their Answers

1. What are shearing stress and shearing strain?
Shearing stress is the tangential force applied per unit area
while shearing strain is the angle of shear expressed in radians
2. What is rigidity? What ts its unit? )
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Rigidity is the ratio of shearing stress to the shearing strain. In
C. G. S. system its unit is dynes/sq. cm.
3. Docs the change in the values of lengh and diameter of the wire
affect the value of rigdity?
No: such changes only change the twist.
4. What is the effect of change of temperature on rigidity?
With the increase of temperature, rigidity decreases.
Distinguish between torsional rigidity t and simple rigidity {n)
The couple required to twist the wire by one radian is the
torsional rigidity () while ratio of the shearing stress to

nnrt
shearing strain is the simple rigidity (n). © = 21

2

\?ﬁ. 10. TO DETERMINE THE MODULUS OF RIGIDITY OF

WIRE BY THE METHOD OF OSCILLATIONS (DYNAMIC
METHOD)

Theory : If a heavy body be supported by a vertical wire of
length | and radius r, so that
the axis of the wire passes
through its centre of gravity
(Fig 2.18) and if the body be
turned through an angle and
released, it will execute
forsional oscillations about a
vertical axis. If at any instant
the angle of twist be 8, the
moment of the torsional couple
exerted by the wire will be

200 -
B
where C = 5 =a constant

and n is the modulus of rigidity
of the material of the wire.

Therefore, the motion is

simple harmonic and of fixed
period

Fig.2.18
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.‘,l
T=2x C e 2)

where | is the moment of inertia of the body.
From (1) and (2).
4r?l  8mll

C " nr?t

8nil
orn = 51 dynes/sq.cm

Apparatus : A uniform wire, a disc or cylindrical bar,
suitable clamps, stop-watch, screw gauge, metre scale, elc.

Description of the apparatus : The apparatus consists of a
solid cylinder C suspended from a rigid support by means of
the wire of which the modulus of rigidity is to be
determined (Fig 2.18). The upper end of the wire A is fixed
at a rigid support. By means of a detachable screw the
cylinder is attached to the lower end of the wire B so that
the axis of suspension coincides with the axis of the
cylinder. In some cases the whole arrangement is enclosed
in a glass case to avoid air disturbances.

Procedure : (i) Detach the cylinder from the suspension
and weigh it with a balance. Also measure its diameter by
means of a pair of slide callipers at five different places.
Then calculate the moment of inertia of the cylinder from its

mass M and radius a using the relatton 1 = —éMa?

{ii) Measure the diameter of the wire by means of a
screw gauge at five different points along the length of the
wire, taking two mutually perpendicular readings at each
position.

{ii} Suspend the cylinder with the experimental wire
from the rigid support so that it rotates about the axis of the
wire.

{iv) Measure the length of the wire from the point of
support and the point at which the wire is attached to the
cylinder with a rod and metre scale.

{v) Put a vertical chalk mark on the surface of the
cylinder and when it is at rest, place a pointer facing the
vertical line. In reference to this pointer, oscillations are
counted. Alternately a telescope is to be focussed from a
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distance on the vertical line on the cylinder so that it may
remaln coincident (without parallax) with the vertical line of
the cross-wire of the telescope.

(vi) Give a little twist to the cylinder from its position of
rest through a certain angle so that it begins to oscillate
about its axis of suspension. With the help of a stop-watch,
note the time for 30 complete oscillations. When the vertical
line on the cylinder is going towards the right, crossing the
tip of the pointer or the vertical line of the cross-wire of the
telescope, a stop-watch is started. The cylinder will perform
one complete oscillation when the line on it crosses the
pointer or the vertical line of the cross-wire again in the
same direction.

(vii) Repeat the operations three times and from these
observations calculate the mean period of oscillation.

Results :

(A) Readings for the diameter of the wire.
Tabulate as in expt. 9.
Mean diameter of the wire = ... cm
Mean radius of the wire. r = ...cm

(B) Readings for the diameter of the cylinder
Tabulate the result as in expt. 9
Radius of the cylinder, a =..... cm

(C) Mass of cylinder, M= ..... gm.
Moment of inertia of the cylinder

I :%M a2 =....... gm cm?
(D) Length of the wire, L
@) ...cm (ii) ... cm (iii) ... cm
Mean [=... cm
(E) Readings for the time period T.

No.of Time for Period of Mean
obs 30 oscillations oscillation T.
T
1
2
3
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Calculation : Modulus of rigidity
8ril
n :fz—r—;dynes/sq.cm

Discussions : (i) Since the radius of the wire occurs in
fourth power, it should be measured very accurately.

(ii) A large number of oscillations should be counted for
determining ordinary T, the period of oscillation.

(iii) The epeimental wire should pass through the axis
of the cylinder.

{iv) The pendulum oscillation of the cylinder, if any,
should be stopped.

(v) Since the ratio of displacement to the acceleration is
constant, the angular amplitude may have any value within
the elastic limits of the experimental wire.

{(vi) With the increase of the length of the wire period of
oscillation increases and with the increase of the diameter of
the cylinder the period decreases.

Oral Questions and their Answers.

1. How do the length and diameter of the wire affect the period
of osclllation of a torsional pendulum?
See 'Discussion (vi)'

2. Does the pertod of oscillation depend on the amplitude of
oscillation of the cylinder?
No. The angle of oscillation may have any value within the
elastic limit of the suspension wire.

3. How will the period of osctllation be affected if the bob of the
pendulum be made heavy?
With greater mass, the moment of inertia increases and

O CALCULATE THE RIGIDITY MODULUS OF THE
MATERIAL OF THE SPRING.

Theory : If a spring be clamped vertically at the end P, and
loaded with a mass m, at the other end A, then the period of
vibration of the spring along a vertical line is given by
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Jmatm o\ [M
T=2n K = 2 oo e e e e e e (1)

where m' is a constant called the effective mass of the
spring and k, the spring constant ie., the ratio between the
added force and the corresponding extension of the spring.
How the mass of the spring contributes to the effective
mass of the vibrating system can be shown as follows.
Consider the knietic energy of a spring and its load
undergoing simple harmonic motion. At the instant under
consideration let the load m, be moving with velocity v, as
shown in fig. 2.19.

1 P
y
ié:
dm v

A
Mg Vo

ecﬁ

'

Fig.2.19.
At this same instant an element dm of the mass m of the
spring will also be moving up but with a velocity v which is
smaller than v,. It is evident that the ratio between v and v,

V, Vi
is just the ratio between y and y,. Hence, Yalije, v="2y.
Y Yo Yo
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The kinetic energy of the spring alone will be T-zl-v2 dm.

But dm may be written as }% dy, where m is the mass of the
spring.

Thus the integral equals to % (r_n?)_) vo2. The total kinetic
energy of the system will then be

—% (mg+ %) vo2 and the effective mass of the system is,

therefore, m, +_3rr_1

Hence m' = %m .............................. (2)

where m' = effective mass of the spring and m = true
mass of the spring. The applied force myg is proportional to
the extension [within the elastic limit. Therefore mg=kl

Hence [ = %.m ......................... 3)

If nis the rigidity modulus of the material of the spring,
then it can also be proved that

4NR3k

L @

where N = number of turns in the spring, R = radius of
the spring and r = radius of the wire of the spring and
k=spring constant.

Apparatus : A spiral spring, convenient masses with
hanging arrangement, clamp or a hook attached to a rigid
framework of heavy metal rods, weighing balance, stop clock
and scale. The spiral spring may be a steel spring capable of
supporting sufficient loads. A cathetometer may also be used
to determine vertical displacements more accurately.

Procedure : (i) Clamp the spring at one end at the edge
of the working table or suspend the spring by a hook
attached to a rigid framework of heavy metal rods.

(ii) Measure the length L of the spring with a metre
scale. Put a scale behind the spring or make any other
arrangement to measure the extensions of the spring.

(iii) Add suitable weight to the free end of the spring so
that it extends to the position O (Fig. 2.18). On the reference

extensionin cm
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frame put behind the spring, read the extension | and note
ion O.
the (Ii)\(r))Si;ull the load from position O to a gxoderately low
position B and then let it go. The spring will now exectltle
simple harmonic motion and vibrate up -and down gbou? €
position O. With a stop clock take the time of 650 _wbr?txons.
Count the vibrations by observing the transits in one
direction of the upper edge of the load at O‘acro'ss the
reference line.Compute the period T in sec per vibration. ]
(v) Repeat operation (iii) and (iv) for at least 5 sets o
load(f/i) Draw graphs with added loads mo in grams (abscxssa;)l
against the extensions of the spring in cm (f.)rdmate} an
with T2 as a function of me. Draw lines of best fit through the

points.

[
/

R —=m
— —=mg i gm m

(a) (b)
Fig. 2.20 ‘
(vii) From the first graph determine the slol?e_ of t%le line
by choosing two points on it, one near the origin with co-
ordinates x; cm and yj gm-wt and the other near the upper
end of the line with co-ordinates xz cm and yz gm-wt.
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Y2-yi .
Xz~ X gm-wt/cm and the spring

constant k will be this slope multiplied by g.

The second graph T2 vs m, does not pass through the
origin owing to the mass of the spring which has not been
considered in drawing it. The intercept of the resulting line
on the mass-axis give m' the effective mass of the spring

(viii) Measure the mass m of the spring with a balance

and show that the effective mass m' obtained from the graph

N S ,_m
1530f1t1,e.,m—3

The slope will be

(ix) Count the number of turns in the spring. Determine
the radius of the spring. With the help of a slide callipers
(Art. 2.1) find out the inside and outside diameters of the
spring. Make several observations. Take the mean values. If D
is the outside diameter and d is the inside diameter then

mean radius of the spring is given by _Dzd

Also measure the radius of the wire of the spring very
carefully with a screw-gauge. A number of values are to be
obtained at different points and the mean value taken.

Then with the help of eqn. (4), calculate the rigidity
modulus of the material of the spring.

kﬁ(/).of Loads | Extension No.of Total period | T2
~ { obs. | mgin} in cms. vibrations time T
£ms in secs in sec.
1
2
3

(C) Draw the graph as described in procedure (vi).
(D} Calulation of k, the spring constant and m’' the effective
mass of the spring as described in procedure (vii).
Yz-Yj

From Fig. 2.20a, Xg-xg = gm-wt/cm = M (say).
Spring constant k = Mg = ............. dynes/cm
(E) Measurement of the mass of the spring, m =...... .... gms.

for Degree Students 73

(F) Data for calculation of n, the rigidity modulus of the
material of the spring.

(a) No. of turns N in the spring = ...

{b) Radius of the spring R:

External diameter of the spring (mean) D =............ cm.
Internal diameter of the spring (mean) d = ............. cm.
Radius of the spring, R = _Qz_d ....... cm
(¢) Radius of the wire of the spring (mean) r =....... cm.
. 4NR3k

Calculation : n="7"" Se........ b dynes/sqg.cm.

Yz-Yr _ _
From graph 1, . X e gm-wt/cm. =M (say).
Spring constant k= Mg =..............dynes/cm.
From Fig. 2.20b, effective mass of spring, m'= ......... gms.

Oral Questions and their Answers.

1. What is spring constant?
When a force is applied to the free end of a spiral spring
suspended from a fixed support, the spring stretches in a
normal maneer and obeys Hooke's law. The ratio of the applied -
force and the elongation is a constant and is known as the
spring constant.

2.  What s the effective mass of the spring?
On the period of vibrations of a spring with a load, the effect of
the mass of the spring distributed over its whole length is the
same as though one-third the mass of the spring is added to
the load. This one-third the mass of the spring is known as
the effective mass of the spring.

EXPT. 12. TO DETERMINE THE MOMENT OF INERTIA OF
A FLY-WHEEL ABOUT ITS AXIS OF ROTATION.

Theory : Fig. 2.21a, shows a mass M, attached by means
of a string to the axle of a fly-wheel radius r, the moment of
inertia of which, about its axis of rotation, is I. The length of
the string is such that it becomes detached from the axlie
when the mass strikes the floor. In falling a distance h, the
potential energy of the mass has been converted into kinetic
rotational and translation energy. If w be the maximum
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5.  What is the phystcal significance of the moment inertia?
Moment of inertia plays the same part in rotating bodies as
mass plays when bodies move in straight line.

6.  What (s the unit of moment of tnertia?

In C.G.S . system it is gm. cm 2

Practical Physics

EXPT. 13. TO DETERMINE THE VALUE OF g, ACCELER-

ATION DUE TO GRAVITY, BY MEANS OF A COMPOUND
PENDULUM

Theory : Compound pendulum is
a rigid body of any shape free to
turn about a horizontal axis. In
Eig. 2.22a, G is the cenire of
gravity of the pendulum of mass
M, which performs oscillations
about a horizontal axis through
O. When the pendulum is at an
angle 6 to the vertical, the equ-
ation of motion of the pendulum
s is Iw = Mglsin® where w is the
angular acceleration produced, |
is the distance OG and I is the
moment of inertia of the
pendulum about the axis of
oscillations. For small amplitude
of vibrations, sinf =8, so that

>

~~

el

Fig.2.22a
Iw = Mglo

Hence the motion is simple harmonic, with period of
vibrations,

. 1/ 1
T=2n MEl

If K is the radius of gyration of the pendulum about an axis
through G parallel to the axis of oscillation through O, from
the Parallel Axes Theorem,

I = M(K?+12), and so

2412
T k2+[2 k ‘[[\
= 2n \/ al =2x \’ - g (1)

Since the periodic time of a simple pendulum is given by

e
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T = 2z é’ the period of the rigid body (compound
pendulum) is the same as that of a simple pendulum of
length ) .

L= KB @
This length L is known as the length of the simple

equivalent pendulum. The expression for L can be written as
a quadratic in (). Thus from (2)

P-L+k2=0 (38)
This gives two values of | (I; and lp) for which the body has
equal times of vibration. From the theory of quadratic
equations,

lj +lz =L and l;lp = k2
As the sum and products of two roots are positive, the two
roots are both positiue. This means that there are two
positions of the centre of suspension on the same side of
C.G. about which the periods (T) would be same. Similarly
there will be two more points of suspension on the other
side of the C. G., about which the time periods (T) will again
be the same. Thus, there are altogether four points, two on
cither side of the C.G., about which the time periods of the
pendulum are the same (T). The distance between two such
points, assymetrically situated on either side of the C. G., will
be the length (L) of the simple equivalent pendulum. If the
length OG in Fig. 2.22a is |; and we measure the length

GS = %(13 along OG produced, then obviously lfli =l Or, OS =
OG + GS = l; + Iy = L. The period of oscillation about either
O or S is the same.

The point S is called the centre of oscillation. The points O
and S are interchangeable ie., when the body oscillates
about O or S, the time period is the same. If this period

of oscillation is T, then from the exprcssion T = 27 \/é‘ we
get

L
g = 4n2. T2

By finding L graphically, and determining the value of the
period T, the acceleration due to gravity (g) at the place of
the experiment can be determined.
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Apparatus : A bar pendulum, a small metal wedge, a beam
compass, a spirit level, a telescope with cross-wires in the
eye-piece, stop-watch, and a wooden prism with metal edge.

Description of the apparatus : The
apparatus ordinarily used in the A
laboratory is a rectangular bar AB of

brass about 1 meter long. A series of

holes is drilled along the bar at S
intervals of 2-3 cm (Fig.2.22b). By s @5
inserting the metal wedge S in one of 2
the holes and placing the wedge on
the support S;Sy, the bar may be
made to oscillate.

Procedure : (i) Find out the centre of
gravity G of the bar by balancing it on
the wooden prism. '
(ii) Put a chalk mark on the line AB of
the bar. Insert the metal wedge in the
first hole in the bar towards A and
place the wedge on the support $;S,
so that the bar can turn round S.

(iii) Place a telescope at a distance of
about a metre from the bar and focus
the cross-wires and rotate the collar
of the tube till the cross-wires form a
distinct cross. Next focus the
telescope on the bar and see that the 8
point of inter-section of the cross- Fig.2.22b.

-

0000000000

-

Q0 0

wires coincides with the chalk mark along the line AB of the
bar.

(iv) Set the bar to oscillate taking care to see that the
amplitude of oscillations is not more than 5° Note the time
for 50 oscillations by counting the oscillations when the line
AB passes the inter-section of the cross-wires in the same
direction.

(v} Measure the length from the end A of the bar to the top
of the first hole i.e., upto the point of suspension of the
pendulum.

U
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(vi) In the same way, suspend the bar at holes 2.3,............. and
each time note times for 50 oscillations. Also measure
distances from the end A for each haole.

(vii) When the middle point of the bar is passed, it will turn
round so that the end B is now on the top. But continue
measuring distances from the point of suspension to the end
A

(viii) Now calculate the time-period T from the time
recorded for 50 oscillations.

(ix) On a nice and large graph paper. plot a curve with
length as abscissa and period T as ordinate with the origin at
the middle of the paper along the abscissa. (Fig.2.22¢).

(x} Through the point on the graph paper corresponding to
the centre of gravity of the bar, draw a vertical line. Draw a
second line ABCD along the abscissa. AC or BD is the length

2
of the equivalent simple pendulum ie., L =L+ ‘l(—l- AG =ljand

2 .
GC= }l{—l = Iy, C being the centre of oscillation.

2
Similarly GD =l; and GB = kl—l— = Iy, B being the cenire of

oscillation. From this, g =4x2 L can be calculated.

T
(xi) By drawing another line A'B'C'D’ calculate another value
of g

Alternate method of measuring the length of the pendulum.

Instead of measuring length from the end A to the point
of suspension, length can also be measured from the point of
suspension to the centre of gravity G of the bar (see Fig.
2.22b). In that case also there will be two sets of readings-
one with the end A at the top and again with the end B at
the top. Calculate the period T with 50 oscillations at each
suspension. Now draw a graph with the centre of gravity of
the bar at the origin which is put at the middle of the paper
along theé abscissa. Put the length measured towards the end
A to the left and that measured towards the end B to the
right of the origin (see Fig.2.22c). A line ABCD drawn paraliel
to the abscissa intersects the two curves at A B C and D.

B
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Here also the length AC or BD is the length of the equivalent
simple pendulum.
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Y
v
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0
£
S
©
Re,
v
a
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£
’—-
—=Distence of knife-edge from fixed end
(d) in cm.

Fig. 2.22¢

Results:

(A) Observation for the time period T and the distance of the
point of suspension from the end A.
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At the top | Hole no. | Distance Time for 50 Mean Time | Mean Period
from A oscillations T
End A 1 =c m (i ....sec
(ii} ...sec
(iii) ...sec
2 = .-..cm i} ....sec
(i) ...sec
(1ii) ...sec
3 = cm (i)
(i)
(iii)
etc
End B 1
ete. etc
3

(B) Alternate method of measuring length.

Use the above table only changing the third column by
"Distance from G",the centre of gravity.

(From graph)

Length BD =...cm.

Mean length L =AC+% =.,.cm
Corresponding time-period from the graph.
4n2L 9
T =...sec. g£= "7 =.....CIM. per sec

Discussions: (i) Distances are to be measured from the end A
or the point G, preferably from A.

(i) In measuring time an accurate stop-watch should be
used.

(iii) Oscillations should be counted whenever the line of the
bar crosses the intersecting point of the cross- wires, in the
same direction.

(iv) Graph paper used should have sharp lines and accurate
squares and should be sufficiently large to draw smooth and
large curves.

(v) Amplitude of oscillations must not be more than 5°

(vi) Error due to the yielding of support, air resistance, and
irregular knife-edge should be avoided.
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(vii) Determination of the position of G only helps us to

Practical Physics

2
understand that AG=landGC = %— =lp and is not necessary

for determining the value of 'g'

(viii) For the lengths corresponding to the points A,B, C and
D the period is the same.

(ix) At the lowest points of the curves P; and Py the centre
of suspension and the centre of oscillation coincide.

It is really difficult to locate the points P; and P, in the
graph and so K is calculated from the relation

K=\ GA.GB =VGBGC.

EXPT .14. TO DETERMINE THE VALUE OF 'g' BY KATER'S
REVERSIBLE PENDULUM.

Theory : In a Kater's pendulum if [} and I, be distances of
two points from the centre of gravity of the bar and on
opposite direction from it such that the periods of
oscillations about these points are exactly equal, then period
T is given by

_ L+l A2 Ll
T= 2r \/ g org=4n® V= .. .. .1

But it is extremely difficult to make the periods exactly
equal. It can, however, be shown in the following way that
the time-periods T} and Ty about these two points need not
be exactly equal.

112+K2 . / l22+K2
Ty = . =

or T12.4g = (4n2 [;2+K2), To2.lpg=4n2 (I 5+K2),

Subtracting, (T%ll-'l‘g g = 4m2(l %'é)

2 2 2 2
4an? [T 2-1,Ty2 1[T1+T2 T1+T2}

or,—g—z 112-122 = 5 ll+lz + l]+l2
812 T 2+4Ty2  T,2-Ty2
or. g T Lty + Ly-1o.

From the above relation, g can be calculated.

l | -
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Apparatus : Kater's pendulum, stop-watch,
telescope, etc,

Description of the apparatus : The Kater's JT'
pendulum consists of a metal rod about one

metre in length having a heavy mass W fixed ik
at one end (Fig.2.23). Two steel knife-edges
k; and ko are fixed to this rod with their
edges turned towards each other, from
which the pendulum can be suspended. Two
other small weights w; and wg can slide
along the rod and can be screwed anywhere
on it. With the help of these two weights,
centre of gravity of the rod can be altered
and the periods of oscillation of the pend-
ulum about k; and kg can be made equal.
The smaller weight wg has a micrometer
arrangement for fine adjustment. The
pendulum is made to oscillate about one of
the knife-edges from a rigid support. L 1w,
Procedure : (i) Suspend the pendulum from
a rigid support about the knife-edge ki, so
that the weight W is in downward position. ° )W
(ii) Focus the cross-wires of the telescope
and rotate the collar of the tube till the
cross-wires form a distinct cross. Next place
the telescope at a distance of about one
metre from the pendulum and focus it on
the lower tail t of the pendulum (or
alternately on a chalk line marked along the

length of the pendulum) so that the vertical Fig. 2.23

line of the cross-wire or the point of intersection of the
cross-wires (when none of them is vertical) coincides with
the tail t or the chalk mark.

(iii) Displace the pendulum slightly and release it. The
pendulum will begin to oscillate. Note the time for 10
complete oscillations (the amplitude of oscillations should be
small) with an accurate stop-watch. Repeat the same for the
knife-edge ky. The two times will generally differ.

(lv) Slide the heavier weight w, in one direction and note
the time for 10 oscillations about k; and ks. If the difference
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between hese two times decreases, then the weight w)
should be slided in the same direction in subsequent
adjustments. But If the difference between these two times
increases, slide the weight w; in the opposite direction.

(v) Go on adjusting the weight w; until the times for 10, 15
and 20 oscillations about the knife-edges k; and ko become
nearly equal.

(vi) Then make the final adjustment by sliding wg until the
time for 50 oscillations about the two knife-edges are very
nearly equal.

(vii) The apparatus is now ready for recording periods T;
and Ty. Suspend the pendulum about the knife-edge k) and
carefully record the time for 50 oscillations. Repeat the
process 5 times. Then suspend the pendulum about the
knife-edge ko and make 5 observations with 50 oscillations
each time. The mean time-period about k; is Ty and that

about ky is Ts.

(viii) Carefully remove the pendulum from the support
without disturbing any of the weights. Place the rod system
on the wedge and find out the C.G. of the system. Measure
accurately the distance [ of k; from C.G. and Iy of kg from

C.G. Hence the distance between the two knife-edges is
ll+12.

Then calculate 'g' from the relation given in eqn. (2) in the
theory.

Results :

(A) Recording of time for 10,15,20, etc, oscillations after
successive adjustments.

BN

(B) Recording of time for 50 oscillations after successive
finer adjustment.
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No of. Time for 50 oscillations
obs about knife-edges
k| ko
1
2
3
etc.

{C) Recording of the periods T} and To

Time for 50 Time for 50
No.of oscillations Mean oscillations Mean
obs. about the T about the To
knife-edge k; knife-edge ko

G W N -

T and Ty should be nearly equal.
(D) Distance between the two knife-edges.

No.of | Reading at Mean Reading at | Mean |Mean distance
obs ki (a) ko (b) (l;+L)=a~b

...CIN ...CIN
...CII «...CIIl

W N
g

(E) Measurement of l; and b.

No.of Time Time

obs. about knife-edge k; about knife-edge ko
1
2
3

etc.

No.of | Reading at | Mean | Reading | Mean | Reading at | Mean Mean Mean

obs knife-edge {a) atCG. {b) knife-edge {c) length length
ki l=ab b=b-c
...cm ...CIR ko ...CIlt ...cim ...cm
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a2 Ty T
g T Ltk Y g
or, g =......cm/sec?
Discussions : (i) The arc of swing should be small.
{i) The support should be rigid and should not move when
the pendulum oscillates.
(iii) Telescope may not be used in the earlier part of the
adjustments.

Oral Questions and their Answers.

1. What is a compound pendulum?
See theory of Expt. No.13.

2. Which is superior—compound pendulum or a simple
pendulum?

The ideal conditions of a simple pendulum cannot be attained
in practice. In a compound pendulum the length of an
equivalent simple pendulum can be determined and hence the
value of 'g’ can be accurately found out. The compound
pendulum oscillates as a whole and due to its heavy mass, goes
on oscillating for a long time. Hence compound pendulum is
superior to simple pendulum.

3. What do you mean by cenlre of supension and centre of
oscillation?

It is possible to find out two points on the opposite side of the
centre of gravity of the pendulum such that the periods of
osciliation of the pendulum about these points are equal. One
point is called the centre of suspension and the other point is
called the centre of oscillation.

4. What is the length of the equivalent stimple pendulum?

The distance between the centre of suspension and the centre
of oscillation is called the length of the equivalent simpie
pendulum.

5. What are the defects of the compound pendulum?

{i) The compound pendulum tends to drag some air with it and
this increases the effective mass and hence the moment of
inertia of the moving system. (ii) The amplitude of oscillation
is finite which needs some correction.
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EXPT. 15. TO DETERMINE THE SURFACE TENSION OF
WATER BY CAPILLARY TUBE METHOD AND HENCE TO
VERIFY JURIN'S LAW.

Theory : The surface tension of a liquid is the force acting
perpendicular to each centimetre of the imaginary line in
the plane of the surface. If one end of a clean capillary tube
of fine bore is dipped into a liquid, the liquid rises up the
tube through a height h (Fig.2.24) The surface tension T acts
upwards along the tangent to the
meniscus. The component of T
acting vertically upwards is Tcosf
and the total force acting
upwards is Tcos6. 2xr, r being the
internal radius of the capillary
tube. This is the upward force
due to surface tension of the
liquid.
The weight of the liquid column
acting downwards is equal to v X p
x g where p is the density of the
Fig-.2.24 liquid and g is the acceleration
due to gravity.
The volume V= nr2h + volume of the meniscus for a tube of
uniform bore. If the radius r is small, the meniscus = volume
of a cylinder of radius r and height h - volumne of hemisphere
of radius r. This can be written as

Volume of meniscus = 7tr3-§ n'r3=é ar3

;
Therefore V= nrZh +:,1§m3=rrr2 (h+ 3)
Hence weight of the liquid column = rr2(h+ %) p.g.

Since the column is in equilibrium the upward force due to
surface tension must support the weight of the liquid
column.

Hence, for equilibrium,

T cos 86X 2ar = nr? (h+ ér) p-g-

For water 4 is zero and hence cos6 is unity. So the above
relation gives
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CHAPTER V
LIGHT

5.1 Parallax

In many experiments on light, one usually comes across
the lerm parallax. Now what exactly is meant by parallax?
This can be answered by considering two
distant objects P and Q which are
situated at two different distances from
the eye but are in line with it to begin
with (Fig. 5.1). Now if the eye is moved
towards the right, P will appear to have
moved in the same direction as the eye
while Q will appear to have moved
backwards in the opposite direction ie.,
towards the left. The eye no longer
appears to lie in one line with P and Q.
o This apparent change of position of

2 distant objects, due to the actual change
Fig. 5.1 of position of the observer, is known as

parallax. Thus parallax means separation. The amount of Fhe
apparent shift is known as parallactic shift. The separation
becomes less as the distance between P and Q decreases and
it simply vanishes when P and Q are coincident in one
position. '

Cause and elimination of optical parallax : It can be easily
seen that the cause of optical parallax is due to the fact that
the two objects lying in different vertical planes
perpendicular to the line of sight, subtend differeqt angles
when the eye is moved obliquely to and fro perpendicular to
the line of sight. To illustrate this point let us consider the
Fig. 5.2. Let E, @ and P represent the position of the eye and
the two objects (one of the objects may, in fact, be the image
of the other as it so often happens in optical expenmen.ts, or
they both may be the images of two different Obj?CtS}
respectively on the same line. To begin with, if the eye is at
the position E on the line EQP then the two rays QE and PE
from Q and P respectively follow the same path and he.nce
the two objects @ and P will be found to lie in one straight
line.
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Now if the eye is moved towards left in the position Ej,
then the ray PE;, from P will remain on the left side of the
ray QE;, from Q. As a result the object P will appear Lo move
towards the left while the object Q appears to move towards
right i.e., in the opposite direction. For exactly similar
reason, the object P will appear to move towards the right,
while @ will appear to move towards left when the eye is
moved towards right in the position E,.

— Thus it can be seen

%\ that as the eye moves,
! \

the more distant of

~ — "
,8 ——Zmp the two objects viz. P
E /"::’ -
T a

Seaa moves with the eye

ﬁ"{;’—:” while the nearer

€ object viz. Q moves
2 opposite to the eye.
: Therefore, by the
Fig. 5.2 movement of P and Q
relative to the movement of the eye, one can detect which
object (here Q) is nearer to the eye and which object (here
P) is far away from the eye.

We have already seen that parallax vanishes when the two
objects are coincident. Hence to eliminate parallax between
the two objects P and Q. the nearer object (Q) will have to be
moved away from the eye ie., towards the distant object (P)
or the distant object (P) will have to moved towards the eye
i.e., towards the nearer object (Q), until there is no
separation between P and Q whether the eye is moved from
E towards E; or E3. This means that the two objects are
now coincident with one another and they will be found to
move together with the movement of the eye.

The principle of parallax is used in may cases to locate
the position of an image by moving a pointer until it appears
to coincide with the image despite movements of the
observer's eye. The process is illustrated in Fig. 53. P
represents the real image of the pin Q seen on looking from
some distance vertically above the pin Q into a biconvex lens
placed above a plane mirror. On moving the head from side
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eye to right eye central

nQ 2 Q
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Fig. 5.3
to side, the pins appear to cross the lens surface as
indicated in the top diagram of Fig. 5.3. The bottom diagram
shows the position of no parallax. When this position is
found, the pin Q is in the same place as its image P which
has to be located. As explained above, it can be seen that the
pin Q (Fig. 5.2) is too near the observer and must be moved

back to give the required result.

5.2 The optical bench and its uses.

A very common piece of apparatus used for the measuremen-

Fig.5.4
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s of the optical constants of mirrors and lenses is the
optical bench. in its simplest form, it consisls of a long,
narrow, horizontal bed, on which can slide several vertical
stands (Fig. 5.4). These stands which carry the object,
screen, lens or mirror, may be fixed at any desired height.
They can be fixed at any position on the bench and their
positions can be read from the scale fitted along the length
of the horizontal bed of the optical bench, with the help of
an index mark which is engraved on the base of each stand
adjacent to the scale. The stands can also be turned about
the vertical axis and in such cases they can even be moved
horizontally perpendicular to the length of the optical bench.

The object screen has a hole at the centre which is fitted
with a cross-wire. This cross-wire when illuminated by a
candle or an electric lamp serves the purpose of the object.
The image screen is nothing but a ground glass or a white
paper fixed to a frame. Lenses are held in lens holders of
various forms, one of which is shown separately in Fig. 5.5.
Index correction : When
working with an optical
bench, it is the actual
distance between the
different parts, viz, the
object, lens, mirror or
screen which is needed.
But the actual distance
between any two of them
say the object and the
lens, may not be equal to
the distance indicated by

Fig. 5.5 the index marks of the
vertical stands carrying them. In order to find the actual
distance, a correction known as index correction must be
carried out in all optical experiments using an optical bench.
The procedure for index correction is as follows :

With a metre scale measure accurately the length lof a
metal rod with pointed ends, provided for this purpose.
Then hold it by a suitable clamp parallel to the length of the
optical bench between, say, the object and the lens, so that
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the ends of the rod just touch the surfaces of the lens at the
middle and the object as shown in Fig. 5.6. Let the apparent
length of the rod as observed from.the bench readings be d.
Then the index correction A for the object distance
(between the object and the lens) is given by (l-d). In order
to get the true distance, A= (l-d) is to be algebraically added
to the apparent distance. Similarly the index correction for

the image distance (between the lens and the image screen)

is to be determined.

If the object or the
screen or the lens
is shifted to ano-
ther position on
the bench, the
index mark moves
through the same
distance as the
object or the scre-
en or the lens

Fig. 5.6 since they are

rigidly fixed to the stands carrying them. So the correction
for getting the actual distance between them remains the
same.

5.3 Lens

Definition : Any transparent refracting medium bounded
by two surfaces of which at least one is curved is called a
lens.

Lenses may be broadly divided into two groups-convex
and concave.

A convex lens is bulged at the middle ie., it is thinner at
the edges but thicker at the middle. It has a converging
effect on the rays. A converging lens, again, may be of the
following three forms :

(i) Double convex or bi-convex : a lens both of whose
refracting surfaces are convex i.e., raised at the middle, is
called a double or bi-convex lens.

(ii) Plano-convex : one of the refracting surfaces of a
plano-convex lens is plane and the other one is convex.
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(iii) Concavo-convex : one of the refracting surfaces of a
concavo-convex lens is concave and the other one is convex.

A concave lens is thicker at its edges but thinner at its
middle. It has a diverging effect on the rays.

Double Plono- Concavo- Double Plano-  Convexo-
Convex Convex Convex ‘Concnn Concaove Concaove

Converg in‘;Lenses Dive rqingvl.enses

Fig. 5.7

Like convex lens a concave lens may also be of the
following three types.

(i) Double concave or bi-concave : both of its refracting
surfaces are concave.

{ii) Plano- concave : one of the refracting surfaces is
plane and the other one is concave.

(iii) Convexo- concave : one of the refracting surfaces is
convex and the other one is cuncave.

The lenses are illustrated in Fig. 5.7

Certain terms connected with experiments involving
lenses :

Principal axis : The surface of the lens on which light
is incident is known as the first surface of the lens and the
surface from which
light emerges out is
known as the second
surface. In case of mo-
st lenses, these surfa-

C2 Py O |P Cy ces are curved and are

the part of two

spheres. The centres

of these spheres are

_ known as centres of

Fig. 5.8 curvatures — the first

centre of curvature (C;) corresponding to the first surface
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and the second centre of curvature (Cg) corresponding to
the second surface {Fig. 5.8). A straight line passing through
{he centres of curvature of the two surfaces ol the lens
(C,0Cy) is called the principal axis of the lens. If one of the
surface is plane, the axis is a straight line normal to the
surface drawn through the centre of curvature of the other
surface. The distances OC; and OCy are known as the radii of
curvature r; and rp of the first and second surface
respectively. The points ol intersection of the two surfaces of
the lens with its principal axis are called the poles (P.P) of
the lens.

Principal focus and focal length : Alens has two principal
foci. The First principal focus (Fy) is a point on the principal

f— ty—f— t—] o, [ ), —

(&) "(b)
Fig. 5.9

axis such that a ray diverging from that point or moving
towards that point becomes parallel to the principal axis
after passing through the lens (Fig. 5.9 a and b). This is the
position of the object, real or virtual, whose image is formed
at infinity. The distance of this point from the centre of the
lens, i.e., the object distance when the image is at infinity, is
known as the first focal length {f).

The second principal focus (Fg) is a point on the
principal axis such that the incident ray moving parallel to
the principal axis will, after passing through the lens,
actually converge to or appear to diverge from this point
(Fig. 5.10a and b). This is a point on the principal axis where
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— fl'——’"_ fz—_’l

(a) (b)
Fig. 5.10

an image, real or virtual, would be formed for an object at
infinity. The distance of this point from the centre of the
lens. ie., the image distance when the ohject is at infinity, is
known as the second focal length (fz) of the lens. When the
medium on both sides of the lens is same (as in the case of a
lens placed in air), the two focal lengths are numerically
equal but opposite in sign.

Note : The second principal focus, either of a convex lens
or of a concave lens,
is active in forming
an image of an actual
ohject. Hence unless
specifically mention-
ed, the terms prin-
cipal focus and focal
length of a lens refer

0 to its second princi-
pal focus and second
focal length respec-
tively.

Optical centre : ltis a
point on the princi-
pal axis inside the
lens so that all rays
passing through this
point within the
material of the lens
Fig. 5.11 will have their emer-
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gent rays parallel to the corresponding incident rays (Fig.
5.11). The ray passing through this point is refracted
without undergoing an angular deviation; it just suffers a
lateral shift. This point is called the optical centre of the
lens. The lateral shift between the incident and emergent
rays, increases with the thickness of the lens. In the
extreme case, when the lens is exceedingly thin, the lateral
shilt may be regarded as zero and the optical centre may
then be defined as that point on the principal axis within the
lens through which a ray passes undeviated.

Conjugate foci : If two points on the principal axis are
situated in such a way that when one serves as the object
point, the other becomes the corresponding image point
and vice versa, then these points are called conjugate foci.

Lens formula : The general formula of a lens, convex or
concave, connecting object distance (u), image distance (v)
and its focrill length (f) is given by,

- f

The general formula of a lens connecting the radii of
curvature of the two surfaces of the lens (ry and ryp),
refractive index of the material of the lens (W} and the focal
length (f) of the lens is given by,

1 1 1

=1 ﬁ-g)

Note : The relation % A1 holds good usually for a thin

<=
=g b

lens. The lenses used in the laboratory are generally thick.

Fig. 5.12
But the above relation will also hold good for thick lenses
provided the distances on either side of the lens are
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measured from two planes perpendicular to the axis, called
the principal planes. In the case of an equi-convex lens of
glass, having a refractive index of approximately 1.5, the
planes are situated at a distance t/3 inside the lens where t
is the thickness of the lens (Fig. 5.12). Thus it is advisable
that while calculating the focal length of a thick lens, the
student should add one-third of the thickness of the lens
(t/3) to the observed values of the ohject and the image
distances measured form the surface of the lens.
Sign convention : In every optical system, the derivation

of various formulae (such as % - % = % ) are based on measu-

Y
direction of light - distance

-ve oxial distance above axis + ve

+ ve axial distance

B
|
X’ P

A o] X
OA =-ve
OP=+ve , Q
AB =4 ve
PQ =- ve distance

below axis -ve

YI
Fig. 5.13

rement of various distances, e.g., object distance, image

distance, etc. These distances are vector quantities and,

therefore, must be represented with proper signs. It is

therefore, essential to adopt a convention of signs to ensure _
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consistency in the derivation and use of various formulae.
The following sel of conventions which agree with the usual
convention of Cartesian set of co-ordinales used in co-.
ordinate geometrey as shown in Fig. 5.13 will be followed
throughout this book.

(i) All figures are to be drawn with the incident light
travelling from left to right.

(ii} The centre of the refracting system is at the origin O
and its axis is along Xx'

(iii} All distances should be measured from the centre of

the refracting system, i.e., from O. Distances measured (o
the left of O are considered negative while all distances to
the right are considered positive.

(iv) Distances measured upward and normal to the X-axis
are laken as positive, while downward normal distances are
taken as negative.

In Fig. 5.13 AB represents an object while PQ is the
corresponding image. The object distance OA is negative
while the image distance OP is positive. The size of the
object AB is positive while the size of the image is negative.

As can be seen from Fig. 5.10, according to the sign
convention mentioned above, the focal length, i.e., the
second focal length of a convex lens is positive while the
Jocal length of a concave lens is negative

Magnification : Magnification (m) is defined as the ratio
of the size of the image to that of the object.

_ size of the image _ image distance _ v
~ size of the object ~ object distance ~ u

Power of lens : The power of a lens is defined as its
ability to converge a beam of light and is measured by the
amount of convergence it can produce to a parallel beam of
light. Since a convex lens produces convergence, its power
is taken as positive. The power of a concave lens, which
produces divergence (opposite of convergence), is,
therefore, taken as negative. Again a convex lens of small
focal length produces a converging effect to a beam of light
which is greater than that produced by a convex lens of
longer focal length to the same beam of light. Thus a convex
lens of small focal length has greater power than a convex
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lens of large focal length. Power can, therefore, be taken as

the reciprocal of the focal length. ‘ '
The unit in which power is measured is called dioptre

(D). A convex lens of focal length 1 meter has a power of + 1
dioptre. Mathematically,
i

P = Tocal length in metres dioptre.
100

dioptre.

= Tocal length in centimetres

EXPT. 38 TO DETERMINE THE FOCAL LENGTH AND
HENCE THE POWER OF A CONVEX LENS BY
DISPLACEMENT METHOD WITH THE HELP OF AN

OPTICAL BENCH.

Theory : If the object and the image screen be so placgd
on an optical bench that the distance D betwef:n them is
greater than four times the focal length (f) of a given convex
lens, then there will be two different positions of the lens
for which an equally sharp image will be obtained on t.he
image screen. Let the points O and I and L; and L2. in Fig.
5.14 represent respectively the positions of the object and

Fig. 5.14
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the image screen and the two different positions of the lens

for which an equally sharp image is oblained. Lel the

distance Ol =D and L - Ly = x.
From the lens equation, we have

1.1

vou

-1
- f

1 1_1 .
D-u u=T (sinceu+v=D)

or,
Applying sign convention, u is negative.
or 1 1_1

*D-utu~T

or,u2-ud+df=0

Solving the above equation which is quadratic, we have

two values of u corresponding to the two positions of the
lens. These are

D2 - 4Df

D
up=g -5 position L; of the lens

D2 - 4Df

D
and ug = 9 +°\ 5 position Ly of the lens

Thenx=Lj ~Ly=uj ~ug =+ VD2-4Df
or x2 =D2 - 4Df
2 _ 32
e L e (1
where D is the distance between the object and the
image and must be greater than 4f and x is the distance
between two different positions of the lens.
The power P of the lens is as usual given by the relation,

or f=

__100 ..
P= fin cm) dioptres

Procedure : (i) Determine the approximate focal length of
the given lens by holding it either in the sun or in front of a
distant bright lamp and obtaining a sharply focussed image
(light spot) on a piece of paper. Then the distance between
the lens and the paper gives the approximate focal length.

(i) Arrange the object (which may be a cross-wire fixed
on a circular aperture of a screen, illuminated by a wax
candle or milky electric bulb) and the image screen on their
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respeclive stands at a distance somewhat greater (by about 5
cm) than four times the focal length. In so doing place the
object near one end of the optical bench and keep this
position of the object fixed throughout the experiment. Place
the lens, mounted on its stand, between the two and adjust
the heights of all the three (object, screen and lens) so that
the centres of the cross-wire of the object, the image screen
and the lens are all in one horizontal straight line. Also make
their planes perpendicular to the length of the optical
bench. '

(iii) INluminate the cross-wire of the object screen. Now
bring the lens close to the object. Then gradually move it
away till you obtain a real, inverted and magnified image of
the object which is sharply focussed on the screen. Note the
position of the lens. Repeat the operation thrice. The mean
of this three readings gives the position L.

(iv) Now move the lens further away from the object, till
you obtan another sharply defined real, inverted but reduced
image on the screen. Note the position of the lens. Repeat
the operation thrice, the mean of which gives the position Ly
of the lens.

(v) Note down the position of the object and image
screen, the difference of which gives the apparent distance
D' between the object and the screen. Determine the index
correction (A) (see Art. 5.2) between the object and the
screen. Then D' +A = D is the correct distance between the
object and the screen. The distance L; ~ Ly gives the
displacement x of the lens which is free from any index
error,

(vi) Repeat the whole operation at least three times,
every time increasing the distance D in steps of say 4 to 5
cm. This should be done by moving away the image screen.

(vii) From the noted values of D and x, calculate f for each
set of data. Determine the mean value of f and from this
calculate the power (P) of the lens.
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Results :
(A) Index error (A) for D.

Practical Physics

Table 1
Length of the Difference of bench scale read- | Index correction for D in cm
index rod in cm () ings in cm when the two ends A={-d)
of index rod touch the object
and the screen (d)
(B) Readings for D and x.
Table I
No. Position of Displace Apparent Corrected
of ment of distance distance
obs. | Object Image Lens at lens between bewteen
(0) n L L, x=Ly~Ly | object and Shject and
(cm) image image
D'=0~1 D=D'+L
1 - -
2
3 -
(C) Table for calculation of f
Table I
No. of Lens Corrected Focal Mean focal Power
100
obs. dis placement dis tance d length length P=—;—
X rom from Tab. I =ﬁ f)
4D dioptes
Tab. II cm
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Note : The method is advantageous because it involves
the determination of only one index error. Also no
determination of the thiciness of the lens is involved.

Note: The focal length can also be determined as follows:

Plot a graph with D as the abscissa and x2/D as the
ordinate. The resulting graph will be a straight line. Its
intercept on the x-axis is numerically equal to 4f.

Egn-1 can be written as x?/D = D-4f. Therefore, if a
graph is plotted with D as abscissa and x2/D as ordinate, it
will be a straight line. The point where the graph cuts the x
- axis, has the co-ordinates (4f, o), since y = O = x2/D. Thus
D-4f=0;

or, D = 4f.

So, the point where the straight line cuts the x - axis has
the value numerically egual to 4f.

Discussions : (i) The formula used in the experiment is
true only when D > 4f since the value of x diminishes with
that of D and is zero when D = 4f numerically. On the other
hand D should not be very large, since the diminished image
(when the lens is at Ly) will be so small that it could not be
detected. The best way is to keep the values of D between 4f
and 5f.

(ii) The value of D should be increased in steps of 4 to 5
cm since a small change in the value of D causes a large
change in the value of x.

e

Oral Questions and their Answers.

1. What lé a lens?

2. Define (a) the principal axis., (b) principal focus and (c) optical
centre of a lens.

3. What are the different kinds of lenses?

Define first and second focal lengths of a lens. Which one of
them is normally taken as the focal length of the lens? Are the
two focal lengths equal or different?

5. What are conjugate focii?

6. What do you mean by power of a lens?
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10.

11.

12.

Practical Physics

For answers lo the above questions see Art. 5.1 - 5.3.
Does the focal length depend on colour?

Yes, as can bt]? setlzn from the relation
-0 s
the focal length { depends on the refractive index p since the
radii of curvature ry and ry are constant for the same lens. As p
depends on colour, i.e.. wavelength of light, f, therefore, also
changes with the colour of light.

What is the condition for getting a real image of a real object?

The lens must be convex. The distance between the object and
the image screen should be at least four times the focal length
of the lens. The lens should be placed mid-way between the
object and the image screen.

How can you test whether a glven lens s convex or concave?

Hold the lens very close to a printed paper and move it along
the paper.

{a) If the image of the printed leiter is erect and diminished
and move in the same direction as the lens, then it is a
concave lens.

(b) If the image is erect and magnified and move in the
opposite direction then it is a convex lens.

What are the practical uses of a lens?

They are used in {elescopes, microscopes and other optical
instruments such as cameras, magnifying glasses, spectacies,
etc.

What is the mintmum distance between an object and the
screen to get tmages for two positions of the lens?

D must be greater than 4f.

Why should the separation between the object and screen be
more than 4f (n this experiment?

Otherwise images cannot be formed for two positions of the
lens.
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13. Is it advisable to make D very large? If not why?
See discussions.
14. Why the index correction for x is not necessary?

For the displacement of the lens must be equal to the
displacement of the index mark of the lens stand.

15. Why one image {s magnified whtle the other is diminished?
image distance

object distance

Hence as the object distance gets bigger and bigger, the
magnification becomes smaller and smaller for the same value
of D.

This is so because magnification =

16. Under what condition will a real magnified or a diminished
image be formed?

When the object is placed at a distance between the focus and
2f from the lens, then the image will be real and magnified.
But if the object is placed between 2f and infinity the image
will be real and diminished.

17. By employing your data can you find f graphically?
Yes, See Note at the end of Table-III

EXPT. 39. TO DETERMINE THE FOCAL LENGTH AND
HENCE THE POWER OF A CONCAVE LENS BY USING AN
AUXILIARY CONVEX LENS.

Theory : A concave lens cannot produce a real image of a
real object; but if a virtual object is placed within its focus, it
can produce a real image of the virtual object. This principle
is utilised in determining the focal length of a concave lens.
At first a real image of a real object is produced with the
help of a convex lens. Then a concave lens is interposed
between the convex lens and its real image in such a way
that the real image falls within the focus of the concave lens.
The real image then acts as the virtual object for the concave
lens. This method has the advantage that the focal length of
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v
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[

Fig. 5.15

the convex lens need not necessarily be less than that of the
concave lens and is therefore suitable for any pair of concave
and convex lenses. However, for greater accuracy of
measurement, it is desirable that the focal length of the
convex lens should be neither too large nor too small as
compared to that of the concave lens.

Referring to Fig. 5.15 it can be seen that the convex lens
L; forms at P a real image of the object O. Now if the concave
lens L be so placed that the distance LP is less than its focal
length, then the image at P will act as a virtual object for the
concave lens and as a result a real image will be formed at
the point 1. Here the object distance LP = u and the image
distance LI = v. According to sign convention both are

positive.

Hence f, the focal length may be determined from the
relation

%-% = % or f= ;u_—‘:; ........ (1)

since v > u,  will be negative which is quite in
accordance with the chosen sign convention (Art.5.3)
The power P of the concave lens may be determined as

usual from the relation

100 ..
P = fcm) dioptres ....... (2)

According to sign convention the power of a concave lens
is negative (Art. 5.3.)
Apparatus : Optical bench, convex lens, concave lens,

screen, index rod, etc.
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Procedure : (i) Select a convex lens L; which has a focal
length of the same order as that of the given concave lens.

(i) Determine the approximate f{ocal length of the
convex lens (see procedure i, expt 38). Mount the object,
the convex lens and the image screen in the manner
described in procedure (ii) of expt. 38. The object, which is
a cross-wire illuminated from behind, should be placed at
one end of the optical bench. Place the image screen at a
distance of 4f from the object where f is the focal length of
the convex lens.

[If the distance is less than 4f no real image of a real
ohject will be produced by a canvex lens. On the other hand
if the distance is greater than 4f, then images will be
obtained for two positions of the lens (expt. 38). It is
important for this experiment that an image is obtained for
only one position of the convex lens. This happens when the
distance between the object and the screen is 4f.]

Place the convex lens mid-way between the object and
the image screen and by slight adjustment of the screen or
the lens or both, make sure that a sharply focussed image is
obtained on the screen for only one position of the lens. The
point P, which is the position of the screen will be the
virtual object for the concave lens.

(iii) Note the position of the object, the lens and the
screen. For the position of the image, take three
independent readings and use the mean in your calculation.
The object and the convex lens should be left undisturbed
throughout the rest of the experiment.

(iv) Shift the image screen by about 5 cm from its
position at P to a new position at [. Introduce the concave
lens between P and L;. The light from O will now be less
convergent and as a result the image will no longer be
formed at P. Adjust the position of the concave lens until a
sharp image is formed on the screen at its new position 1.
Adjust the position of the concave lens three times
independently and each time note its position from the main
scale. Use the mean of these three positions in your
calculation.

(v} Shift the position of the screen away from the
concave lens for two or three more times by steps of about 5
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cm and each time adjust the position of the concave lens
until a sharp image is formed on the screen. As before, the
position of the concave lens should be adjusted thrice and
the mean of the three readings should be used.

(vi) Next determine the index correction (A} between the
concave lens and the screen and hence determine the
corrected values for u and v.

(vii) From the corrected values of u and v determine f for
each set of observations.-of u and v. Then find out the mean {
which should be used in equation (2) to determine P, the
power of the lens.

Results :

(A) Data for index error (A) between the concave lens and
the screen.

Table I

Diff. of bench-scale readings in cm when

Length of index the two ends of the index rod touch the Index correction

rod in cm () concave lens and the screen {d) incm A = (L d)
(B) Table for u and v.
Table II
No. of Positions of Apparent § Apparent
abs. Object | Convex | image Concave Image shject image
(0) lens with lens with distance | distance § u=u'+i | v=v'+A
convex (L) combi u'= L~P

Ly}

lens

(P)

nation

(1)

v'zl~l
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(C) Table for 'f
Table III
Focal Mecean Power
No. of Obfect Image length focal
distance distance length P= f:::;)

cm
1
2
3
4
5

Discussions : (i) The image formed by the concave lens
should be focussed on the screen by shifting the positions of
the concave lens and not by moving the screen. This is
necessary because the focussed condition of the image will
not change within an appreciable range of the movement of
the screen.

(i) If LP is equal to the {ocal length of the concave lens,
then the light emerges from the concave lens paraliel to the
axis and consequently no image is formed.

Oral Questions and their Answers.

1. Why do you use an auxiliary convex lens?
See theory.

2. What happens {f the convex lens forms the real tmage beyond
the focal length of the concave lens?
In that case the image due to the concave lens is virtual and
therefore cannot be held on the screen.

3. Can the experiment be performed with a convex lens of any
focal length?
Yes.

4. Where should the object of the convex lens be placed?
Outside the focal length of the convex lens so that a real image
may be formed.
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EXPT. 40 TO DETERMINE THE REFRACTIVE INDEX OF A
LIQUID BY PIN METHOD USING A PLANE MIRROR AND A
CONVEX LENS.

Theory : If a convex lens is placed on a few drops of
liquid on a plane mirror, then on squeezing the liquid into
the space between the mirror and the lens a plano-concave
liquid lens is formed. The curved surface of this liquid lens
has the same radius of curvature as the surface of the convex
lens with which it is in contact. Thus we have a combination
of two lenses - one of glass and the other of liquid, which
behaves as a convergent lens. If F be the focal length of the
combination then we have the relation

where ] and f; are the focal lengths of the convex lens and
the liquid lens respectively.
Correcting for the sign of fy which is negative,

1 1 1
VeEL RN R

1 1
or f2=H-F ......... 2)

Determining F and f; experimentally, we can calculate fy
from relation (2).
The focal length fy of the plano-concave liquid lens is also

, ; 1 11 1 .
given by the relation L= n-1) (;-?) ={u-1 (?) (r' =
o<, the lower face of the liquid lens being a plane)

According to sign convention, both fs and r are negative.
Thus

1_
or, fz_. T

where | is the refractive index of the liquid.
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Finding r, the radius of curvature of the lower surface of
the convex lens i.e., the surface in contact with the liquid,
and knowing f, from relation (2), the refractive index p of
the liquid can be found out by using relation (3).

Apparatus : A convex lens, plané mirror, pin with its tip
painted red, spherometer, slide callipers, stand and some
experimental liquid. '

Description of the apparatus : Spherometer (see Art 2.3)

Procedure : The experimental procedure may be divided
into three parts -

(a) determination of the focal length f; of the convex lens

(b) determination of the focal length of the combination
and

(c) measurement of the radius of curvature of that surface
of the convex lens which is in contact with the liquid.
(a) Determination of the
focal length of the convex ,
lens: The focal length of a OPP=PI<:‘E;::‘
convex lens may be 1
determined by the method
described in expt. 38. But an
easy and quicker way to
determine this is by a
method known as pin
method. The  method
depends on the fact that if
an object, say a pin P, be
placed at the principal focus
of a convex lens L (Fig. L
5.16.), then the rays from it 0/ ===
after passing through the - M
lens emerge parallel. Parallel L
rays will be incident norm- Fig. 5.16

ally on the plane mirror M and will retrace their path
after reflection. As a result an image (P') of the object will be
formed just by the side of the object. The distance PL
between the centre of the lens and the object is the focal
length of the lens.

- - ——-— e - - .~ -
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(i) For the measurement of the focal length (f) of the
convex lens place a plane mirror M on the table with itls
rellecling face upwards (Fig. 5.16). Place the lens L over the
plane mirror M and clamp a pin, whose tip should be
painted red, horizontally on a vertical stand in such a way
that the tip of the pin is visible (see discussion i). Now find
the position of the pin by moving it up or down so that there
is no parallax (see Art 5.1) between P and P i.e, the image of
the tip and the tip itself. Measure the distance PL between
the tip of the pin and the centre of the lens. In order to
measure PL first measure the distance h; between the pin
tip and the upper surface of the lens near its middle by
a metre scale. Then remove the lens and measure its
thickness t with a pair of slide callipers. PL is then equal

t
to h_l + '5

(ii) Repeat the operation (i) for three or four different
settings and take the mean value of PL.ie. f;

(b) Determination of the focal length of the combination:

After determining the focal length of the convex lens
carefully introduce a few drops of the liquid, whose
refractive index is to be determined, into the air film
between the plane
mirror and the lens.
The liquid will thenbe
squeezed into the space
between them by capill-
ary action and a plano-
concave lens of the
liquid will be formed
(Fig. 5.17). The combin-
ation of the liquid lens
and the convex lens
behaves as a convergent
lens. Repeat the opera-
tions (i) and (ii) descri-
bed in (a} and obtain
the mean value of F.

TUtit11301720000 errere i)
e ]

Fig. 5.17-
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(c) Determination of the radius of curvature:

Remove the lens and wipe it dry. With the help of a
spherometer, measure the radius of curvature (r} of the
surface of the lens which was in contact with the liquid in
the manner described below :

(i) Determine the value of the smallest division of the
vertical scale of the spherometer. Rotate the screw by its
milled head for a complete turn and observe how far the disc
advances or receeds with respect to the vertical scale. This
distance is the pitch of the spherometer. Divide the pitch
by the number of divisions in the circular scale. This gives
the least count of the instrument.

(i) Place the spherometer upon a piece of plane glass
plate (base plate} and slowly turn the screw so that the tip of
the central leg just touches the surface of the glass. When
this is the case, a slight movement of the screw in the same
direction makes the spherometer legs develop a tendency to
slip over the plate. ,

(iii) Take the reading of the main scale nearest to the
edge of the disc. Take also the reading of the circular head
against the linear scale. Tabulate the results. Take three such
readings at different places of the glass plate and take the
mean value. :

{iv) Now raise the central screw and place the
spherometer on that surface ¢f the convex lens which was in
contact with the liquid. Turn the screw slowly till it just
touches the surface of the lens. Note the readings of both the
linear and circular scales. Repeat the operation at least three
times at different places of the surface and take the mean of
these readings. Let the difference of this reading and the
reading on the base plate be h.

(v) Finally place the spherometer upon a piece of paper
and slightly press it so that the three legs leave three dots
on the paper. Measure the distance between these marks
individually with a divider referred to a vernier scale. Take
the mean of the three individual readings. Let this reading

bea
Then the radius of curvature of the surface of the lens is
given by
& ,h
“6h" 2
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Results :

(A) Calculation of the Least Count.

Main scale is gradualed in millimelres (say). Pilch of the
micrometer screw, P = ...... mm = ...... cm

No. of divisions in the circular scale, n=.......

Least count (L.C.) of the instrument = %: ...... cm
(B) Measurement of h
Reading No. of Linear § Circular Least Frac
on obs. scale scale count tional Total Mean
reading | division reading
cm n cm nd.C cin cm
Basc 1
Plate 2
3
Lens 1
surface 2
3
h = Reading on lens - Reading on the base plate = ........ cms
(C) Measurement of a .
@ ...... cm (i) ...... cm (iii) ...... cm
Mean value of a= ...... cm
Hencg the radius of curvature of the spherical surface,
= ‘ng‘ + g‘= ceeans cms
(D) Determination of the focal lengths.
Thickness of the lens, t = ... cm
No Distance Focal length Distance Focal Focal
of between of the convex M between length length
obs. the pin lens E the pin of the of the
and the fy=hp+ é A and the combi- M liquid
face of N top sur- nation E lens
the lens face of F A fp= Ff
without f1 the lens | - ho + é N F-f}
the with the
liquid ) liquid F
thy) (ho)
1 "
2 " - .
3 -

Calculation : p =1+ é-:
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Discussions : (i) If the pin is placed within the principal
focus of the lens a virtual erect image will be observed,
which is of no use, since it is the coincidence with the real
inverted image which is looked for. The pin has to be moved.
further away from the lens till the image seen is inverted.
Then the point of coincidence is found by strictly avoiding
parallax.

(i) The pin should be moved along the axis of the lens so
that refraction may occur through the centre of the lens,
thus avoiding spherical and chromatic aberrations.

EXPT. 41 TO DETERMINE THE REFRACTIVE INDEX OF
THE MATERIAL OF A CONVEX LENS BY A TELESCOPE AND
SPHEROMETER.

Theory : When a telescope is focussed at an object at
infinity and the image formed at
the cross-wires of the eye-piece
of the telescope, then the cross-
wires must have been placed at
the principal focus of the
objective, because the image
distance i.e., the distance
between the cross- wires and
the objective in this case must
< be equal to the focal length of
the objective of the telescope
(Fig. 5.18). Now let a convex
lens, the refractive index of
whose material is to be
determined, be placed in front
of the telescope objective in
such a way that it just touches
the objective. Without any
adjustment of the telescope, if

<
K
—
<
<
<
-
<
<

elescope objective
From Inifinity,

\
]
/

p——_———V =f - —

§' an object at a certain distance u
£ from the convex lens be
focussed so that its image is still
formed on the cross-wires, then
Fig. 5.18 the object distance u must be
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always have a point-to-point phase relationship, ie., they are
coherent. The formation of interference fringes by (i)
Fresnel bi-prism, (ii) Lloyd's single mirror, (iii) Fresnel's
double mirror, (iv) Rayleigh's interferometer, etc., belong to
this category.

(b) Division of amplitude : In this method, the wavefront
is also divided into two parts by a combination of both
reflection and refraction. Since the resulting wavefronts are
derived from the same source, they satisfy the condition of
coherence. Examples of this class are the interference
effects observed in (i) thin films, (ii) Newton's rings (iii)
Michelson interferometer, (iv) Fabry-Perot interferometer,
ete.

EXPT. 46. TO DETERMINE THE RADIUS OF CURVATURE
OF A LENS BY NEWTON'S RINGS.

Theory : Newton's rings is a noteworthy illustration of
the interference of light waves reflected {rom the opposite
surfaces of a thin film of variable thickness. When a plano-
convex or bi-conves lenx L of large radius of curvature is
placed on a glass plate P, a

thin air film of progressively A

increasing thickness in all ¢
directions from the point of F
contact between the lens

and the glas plate is very | L

easily formed (Fig. 5. 36). e 'V ’/E" A
The air film thus possesses a . o 'BYS .
radial symmetry about the o TR R
point of contact. When it is Pow v o . "
illuminated normally with

monochromatic light, an Fig. 5.36

interference patiern consisting of a series of alternate dark
and bright circular rings, concentric with the point of
contact is observed (Fig. 5.37). The fringes are the loci of
points of equal optical film thickness and gradually become
narrower as their radii increase until the eye or the
magnifying instrument can no longer separate them.

-
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Let us consider a ray of monochromatic light AB from an
extended source to be
incident at the point
B on the upper surf-
ace of the film (Fig. 5.
36). One portion of
the ray is reflected
from point B on the
glass air boundary and
goes upwards along
BC. The other part
refracts into the air
: film along BD. At point

Fig.5.37 D, a part of light is
again reflected along DEF. The two reflected waves BC and
BDEF are derived from the same source and are coherent.”
They will produce constructive or destructlive interference
depending on their path difference. Let e be the thickness of
the film at the point E. Then the optical path difference
between the two rays is given by 2ue cos (8+r) where 8 is
the angle which the tangent to the convex surface at the
point E makes with the horizontal, r is the angle of
refraction at the point B and p is the refractive index of the
film with respect to air.

From an analytical treatment by Stokes, based on the
principle of optical reversibility, and Lloyd's single mirror
experiment, it was established that an abrupt phase change
of m occurs when light is reflected from a surface backed by a
denser medium, while no such phase change occurs when
the point is backed by a rarer medium. In Fig. 5.36 the point
B is backed by a rarer medium (air) while the point D is
backed by a denser medium (glass). Thus there will be an

additional path difference of % between the rays BC and

BDEF corresponding to this phase difference of n. Then the
total optical path difference between the two rays is

2ue cos { B+1) £ ?21

The two rays will interfere constructively when



el

276 i Practical Physics
A
2pe cos ( 6+r) =Nk
or 2pe cos (6+r) = (2n-1) % ... (1)
The minus sign has been chosen purposely since n cannot
have a value of zero for bright 0
fringes seen in reflected light. f N
The rays will interfere R
destructively when R-¢| %

2pe cos ( 6+r) + %: (2n +1) %

1
!
i
1
..... B § I
or 2pe cos (6+1) = nA... ... (2) N F!/):Bi

A is the wavelength of light in C2 <V Ebe ==ty ——-oi Cy
air.

Fig. 5.38

In practice, a thin lens of extremely small curvature is
used in order to keep the film enclosed between the lens
and the plane glass plate extremely thin. As a consequence,
the angle 8 becomes negligibly small as compared to r.
Furthermore, the experimental arrangement is so designed
(Fig. 5.39) that the light is incident almost normally on the
film and is viewed from nearly normal directions by
reflected light so that cosr = 1. Accordingly eqns. (1) and (2)
reduce to

2ue = (2n-1) % ....... bright

and 2ue=ni ... ... dark.

Let R be the radius of curvature of the convex surface
which rests on the plane glass surface (Fig. 5.38). From the
right angled triangle OFB), we get the relation

R? = rp2+(R-¢)2

or rp2= 2Re-¢2

where ry, is the radius of the circular ring corresponding
to the constant film thickness e. As outlined above, the
condition of the experiment makes e extremely small. So to
a sufficient degree of accuracy, e2 may be neglected comp-

- In~
ared to 2Re. Then e = °R

for Degree Students , : 277

Substituting the value of e in the expressions for bright

and dark fringes, we have
l'n2 = 221—13 . . bnght

R
and rn2=(2n-1)% w. ..dark.

The corresponding expressions for the squares of the

diameters are
Dp2=2 (2n-1)%R ... bright /
4nAR T
and Dp?2= e .. dark.
M -

In the laboratory, the diameters of the Newton's rings
can be measured with a travelling microscope. Usually a little
away from the centre, a bright (or dark) ring is chosen
which is clearly visible and its diameter measured. Let it be
the nth order ring. For an air film p=1. Then we have

Dp2=2 (2n-DAR ... .. (3)... ... bright
and Dp2=4nAR ... .. (4)... ... dark

The wavelength of the monochromatic light employed to
illuminate the film can be computed from either of the above
equations, provided R is known. A

However, in actual practice, another ring, p rings from
this ring onwards is selected. The diameter of this (n+p)th
ring is also measured. Then we have

Dn4+p? =2(2n+2p-1) AR ... bright
and Dp4p? =4(n+p) AR ... ... dark
Subtracting Dp? from Dp,p2, we have
Dn4p? - Dp2=4p AR... (5)

for either bright or dark ring.

D 2_D 2
orR= ﬂi—px—n e .. ()
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Note : In Newton's rings experiment eqn. (5) is invariably
employed to compute A or R. The advantage of eqn. (5) over
eqns, (3) and (4) lies in the fact that eqns. (3) and (4) have
been derived on the supposition that the surfaces of the lens
and the plate are perfect, i.e., the thickness of the air film at
the point of contact is zero (e=o). This gives rise, in a
reflected system, a fringe system of alternate bright and
dark rings concentric with a central dark spot. In actual
practice, either due to some imperfections in the surfaces in
contact or due to encroachment of some dust particles
between the lens and the plate, they may not be in perfect
contact i.e., the thickness of the film may not be zero at the
central point. The order, x, of the central ring is therefore
indeterminate, i.e., it is not possible to say with certainty if
the central dark ring corresponds to zero, 1st, 2nd, etc.,
order. The central spot may even be white. As a
consequence, the order of every other bright or dark ring
advances by this indeterminate nubmer x. For any one of
them, the square of the diameter is not given by eqn. (3) or
(4). But this indeterminacy does not occur in eqn. (5) when
the difference of the squares of the diameters of the nth and
(n+p)th dark or bright rings are considered, counting the
rings p, between them visually.

Apparatus : Two convex lenses one of whose radius of
curvature is to be determined, glass plate, sodium lamp,
travelling microscope,etc.

Description of the apparatus:

The experimental arrangement of the apparatus is shown
in Fig. 5.39. Light from an extended monochromatic source
S (sodium lamp),placed at the principal focus of the convex
lens C. falls on the lens and are rendered parallel. This
parallel beam of light then falls on the glass plate G, inclined
at an anlge of 45°, and are reflected downwards normally on
to the lens L, the radius of curvature of whose lower surface
is R. The lens L (see discussion v) is placed on the glass
plate P which is optically worked ie., silvered at the back. A
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travelling microscope M, directed vertically downwards,
magnifies the system of rings. The lens C, can be fitted in
the circular aperture of a screen which can be used to
prevent light from the source to reach the observer's eye.

Travelling Microscope : See Art.2.5

Sodium lamp or bunsen flame soaked with NaCl sloution:
See Art. 5.4.

Procedure : (i) Arrange your apparatus as shown in
Fig.5.41. Level the microscope so that the scale along which
it slides is horizontal and the axis of the microscope is
vertical. Focus the eye-piece on the cross-wires. Determine
the vernier constant of the micrometer screw of the
microscope.

(ii) Carefully clean the surfaces of the lens L and the glass
plate P by means of cotton moistened with benzene or
alcohol. Place the glass plate P as shown in the figure. Make
an ink dot-mark on the glass plate and focus the microscope
on this dot. Now place the lens L on it in such a way that the
centre of the lens, which is exactiy above the dot is
vertically below the microscope objective.

Y

Y

Fig. 5.39
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(iii) Place the glass plate G in its position, as shown in
the figure, in such a way that light from the source S, after
passing through the lens C, is incident on it at an angle of
approximately 45°. If you now look into the microscope, you
will probably see a system of alternate dark and bright rings.
Adjust the glass plate G by rotating it about a horizontal axis
until a large number of evenly illuminated bright and dark
rings appear on both sides of the central dark spot. Adjust
the position of the lens C with respect to the flame so that a
maximum number of rings are visible through the
microscope. This will happen when the flame will be at the
focal plane of the lens C.

(iv) After completing these preliminary adjustments,
focus the microscope to view the rings as distinctly as
possible and set one of the cross-wires perpendicular to the
direction along which the microscope slides. Move out the
microscope to the remotest distinct bright ring on the left
side of the central dark spot. The cross-wire should pass
through the middle of the ring and should be tangential to it.
Note the reading of the microscope. Move the microscope
back again. Turn the screw always in the same direction to
avoid any error due to back-lash. Set the cross-wire carefully
on the centre of each successive bright ring and observe the
microscope reading. Go on moving the microscope in the
same direction. Soon it will cross the central dark spot and
will start moving to the right side of it. As before set the
corss-wire on the consecutive bright rings and take
readings. Proceed in this way until you have reached the
same remotest bright ring as in the case of left side of the
dark spot. Considering a particular ring, the difference
between the left side and right side readings, gives the
diameter of the ring. In this way, the diameters of the
various rings are determined (see discussion)

(v) Tabulate the readings as shown below. While
tabulating the reading you should be careful about the
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number of the ring so that the left side and right side
readings correspond to the same ring.

(vi) The whole experiment may be repeated moving the
microscope backwards in the opposite direction over the
same set of rings. _

(viij Draw a graph with the square of the diameter as
ordinate and number of the ring as abscissa. The graph
should be a straight line (Fig.5.40)

(viii) From the graph determine the difference between
the squares of the diameters of any two rings which are
separate by say about 10 rings i.e., p is equal to 10. Now
calculate R with the help of eqn. (6) «

Results ;

Vernier const. of the micrometer screw : (Record details
as in previous expts.)

Table for ring diameter

ritng Readings of the microscope Diometer |p2
e Left sid Right side of thering
side i i
: < [0=L~R]
py > >
. >
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, Discussions : (i) The intensity of the ring system
40 decreases as one goes from the inner to the outer rings, thus
setting a limit for the selection of the outermost ring whose
Q" diameter is to be measured.

(i) Newton's rings can also be observed in transmitted

.30 A light but in that case the rings will be less clearly defined
and less suited for measurement.

(iii) It may be noticed that the inner rings are somewhat

A broader than the outer ones. Hence while measuring the

.20 ‘ diameter of the inner rings some error may be introduced.

The cross-wire should be set mid-way between the outer and
inner edges of a ring. A more correct procedure is to
/ ’ determine the inner and outer diameters of a particular ring
by setting the cross-wire tangentially at the inner and outer
edges on both sides of the ring. From this the mean
diameter can be found.

Square of the diameter of the rings in cm?

(iv) The first few rings near the centre may be deformed
due to varicus reasons. The measurement of diameters of
10 20 30 40 these rings may be avoided.

Number of the rings (v) For the purpose of the experiment a convex 1&
whose radius of curvature is of the order of 100 cm is
suitable. Otherwise the diameters of the rings will be too
small and it will be difficult to measure them.

(vi) Due account should be taken of the fact that in the
present experiment, the rings which are formed in the air
film in the space between the lens and the glass plate are
not seen directly but after refraction through the lens. This
inevitably introduces an error. However, if the lens used is
From the graph D2p4p - D% =... ...cm? thin then this error is not great.

D2;,p-D?, = 4pAR

Graph (Fig.5.40)
Calculation : .
Mean wavelength of sodium light (A)=5893
A.U.= 5893x108 cm

R = D2n+Q'D2n

4ph
The radius of curvature of the lower surface of the given
lens=.. ..cm
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E . 47. TO DETERMINE THE WAVELENGTH OF MONOC-
HROMATIC LIGHT BY NEWTON'S RINGS.

Theory : We have seen in the theory of the previous
experiment that the difference in the squares of the
diameters of the nt" and (n+p)t" rings is given by

4pAR
1)
For an air-film p=1

Then D?,,p-D2, = 4pAR

D2n+p - D2n =

D2 _D2 :
or A =—"§51—& e (D

Thus if R, the radius of curvature of the surface of the
lens in contact with the plane glass plate is known, then A
can be determined from the above equation.

Apparatus, Description of apparatus, Experimental set-
up: Same as expt.46. '

Procedure : (i) Determine the difference between the
squares of the diameters of any two rings (D2,,,p" D2,) which
are separated by say about 10 rings (p=10) in the manner
described in the previous experiment.

(i) Measure the radius of curvature of the surface of the
lens which was in contact with the glass plate in the manner
described in expt.40.

Results :
A. Table for ring diameter :
Same as in expt.46
Graph of ring number vs. (diameter)2
Similar as Fig.5.40
B. Table for radius of curvature of the lens:
Arrange your data in the manner shown in expt.40,
and calculate R.

Calculation :
From the graph, D2, -D2;=... cm?
Radius of curvature of the lens, R=...cm
A =—Di’4ﬂ-’£2—“— =..cm= .. AU

pR.
Discussions : Same as in expt. 46.
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Art. 5.6 : Essential discussions for diffraction experiments.

2 Let us start
by refering

to Fig. 5.41
where a be-

l am of light
is incident
e - ——— —— b on a long

T narrow slit
of width a

and is allo-
wed to fall
on a screen
Fig. 5.4 1 SS'  placed

at a certain distance from the slit. According to geometrical
optics, only the portion PQ of the screen which is of the
same dimension as the slit and directly opposite to it will be
illuminated. The rest of the screen will remain absolutely
dark and is known as the geometrical shadow. However, on
careful observation it will be found that if the width of the
slit is not very large compared to the wavelengh of light
used, some light will encroach into the region of geometrical
shadow. As the width of the slit is made smaller and smaller,
this encroachment of light into the geometrical shadow
becomes larger and larger. This encroachment or bending of
light into the region of geometrical shadow is known as

i

~ diffraction of light. The phenomenon of diffraction is a part

of our common experience. The luminous border that
surrounds the profile of a mountain just before the sun rises
behind it, coloured circular fringes when strong source of
light is viewed through a fine cloth, etc., are the practical
day to day examples of diffraction.

Classes of diffraction : Based on the relative positions of
the source, obstacle and screen, the diffraction phenomenon
is classified into following two groups, known for historical
reasons as (i) Fresnel class of diffraction and (ii) Fraunhofer
class of diffraction.
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1. Fresnel class : The source of light or the screen or

both are at finite distances {rom the diffracting aperture or
slit. Its explanation as well as practical demonstration is
relatively difficult.

2. Fraunhofer class : Both the source and the screen are
at infinite distances from the aperture. This is very
conveniently achieved by placing the source on the focal
plane of a convex lens and placing the screen on the focal
plane of another convex lens. The first lens makes the light
beam parallel and the second lens makes the screen receive
a parallel beam of light, thus effectively moving both the
source and the screen to infinity. Thus it is not difficult to
observe the Fraunhofer diffraction. pattern in the laboratory.
An ordinary laboratory spectrometer is all that one needs for

. observing this pattern; the collimator renders the incident

light parallel and the telescope receives parallel beams of
light on its focal plane. The diffracting aperture is placed on
the prism table. :

Diffraction and interference:

Let a beam of parallel monochromatic light be incident
normally on a slit on an opaque plate. A slit is a rectangular
aperture of length large compared to its breadth. The beam,
transmitted through the slit, spreads out perpendic‘ularly to
the length of the slit. When this beam is brought to focus on
a screen by a lens, a diffraction pattern of the Fraunhofer
class is obtained. The pattern consists of a central band,
much wider than the slit width, situated directly opposite to
the slit and bordered by dark and bright bands of decreasing

intensity.

The origin of the pattern can be understood on the basis
of Huygens' interference of secondary wavelets. According to
Huygens' principle, these wavelets can be thought of as sent
out by every point of the wavefront at the instant it occupies
the plane of the slit. Each secondary wavelet can be regarded
as a spherical wave spreading out in the forward direction.
The parts of each wavelet travelling normally to the slit, are
brought to focus by the lens at a point on the screen directly
opposite to the centre of the slit. The parts of the wavefront
travelling at a particular angle with the normal are brought
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to focus at another particular point on the screen and are
regarded to be diffracted at that particular angle. Thus it
follows, exactly along the same argument, that diffracted rays
start from every point in every direction. If there are more
than one slits, diffraction takes place at individual slits and
the diffracted beam from different slits interfere to give an
interference pattern. Thus the intensity at any point will
depend upon the intensity due to diffraction at the single slit
and interference due to two or more slits used, i.e., the
resultant diffraction pattern due to two or more slits is the
combination of diffraction and interference effects.

Diffraction grating : The principal maxima in case of
single slit is broad and diffused. If the diffraction patterns
due to single, double, ... five .... slits are examined, a gradual
change in the diffraction pattern will be observed. The most
striking modification consists in the gradual narrowing of
the interference maxima as the number of slits is gradually
increased. With two slits these maxima are diffuse, the
intensity varying essentially as the square of the cosine. With
more slits, the sharpness of these principal maxima
increases rapidly, essentially becoming narrow lines with 20
slits. Apart from this, by far the most important change
which is noticed is the appearance of weak secondary
maxima between the principal maxima. The number of these
secondary maxima increases with the increase in the
number of slits, but the intensity of these secondary maxima
decreases with the increase in the number of slits. With
three slits, the number of secondary maxima is one; its
intensity being 11.1 per cent of the principal maxima. With
four slits this number becomes two and with five slits there
are three weak secondary maxima. With more number of
slits, the intensity of the secondary maxima becomes
negligibly small so that these are not visible in the diffraction
pattern. .

A large number of closely spaced parallel slits separated
by equal opaque spacings form a diffraction grating. 1f there
are N slits the effect at any point may be considered to be
due to N vibrations. A cross-section through a grating is
shown in Fig 5.42. It consists of a series of slits, of width b
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separated by opaque strips of width a. Let a parallel beam of
monochromatic light from an illuminated slit be incident
normally on this grating. Let this beam of light be diffracted
through an angle 6. From the figure it is clear that light
reaching the objective lens of the telescope from the various

O

—
]

F=——-
| .

//‘

Telescope

Fig. 5.42

slits of the grating has travelled a distance which is different
for different slits. Let the path difference for two rays at A
and B which originate from two adjacent slits be BN. But
BN=AB sin 6= (a+b) sin 8 since AB=a+b. Clearly, the path

difference for two rays originating from slits which are not
adjacent will be a whole number (integral) multiple of (a+b)
sin 8 .For example, the path difference between wavelets
starting from A and C will be 2 (a+b) sin 8 and so on.

Taking the phase of vibration from A as zero, the phase from

slit to slit increases by Tn (a+b) sin 0, i.e., this is the

common phase difference for N vibrations originating from
N slits. The average phase change between two

corresponding points on slits A, B is [o +(—i£) (a+b) sin 0]/2
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=(§){a+b}sin6 . This is true for any of the two corresponding

Apsino

a .
the secondary wavelets originating from any one of the slits
(see a text book on optics), then the resuliant for N slits is
given by
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points on the consecutive slits. If is the amplitude of

- A sin(nd)
R="Gnd
where A = Agsin o R n=N and d = Ti(a+b) sin 6.
o
sin [N E{a+b)sin9]
sino A
~ R=Aq

sin [(;ct) {(a+b) sind]

2 sina sin?N
Intensity I=R2= A, 7;&%

where ¢ = i (at+b) sin 0.

The expresssion for intensity contains both diffraction
and interference effects.
2 sin?
0 2
due to diffraction at a single slit.

(i) The term A = gives the distribution of intensity

. 2N
(i) 30 o
sin2¢

corresponds to interfernce pattern of N slits.

Thus the final diffraction pattern is the resulant of two.
sinZo
o2
of definite dimensions. The intensity in the final pattern will
sin?Ng
sinZg

The first factor Ag may be taken to be constant for a slit

depend on ; but for a definite value of N, the intensity

depends on phase, ie., ¢ =-;:c (a+b) sin 8.

For principal maxima, the condition is sin8=0, .
or 6 =inn, wheren=0,1, 2,3,...........
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or (a+b)sin 6= nA (principal maxima)................. (1
where 8 is the angle of diffraction.

Eqn. (1) is fundamental in the theory of grating.
If there are N slits per cm, then

N = (avb)
sinB
or A= N

where n is the order of the spectrum. (a+b) is called the
grating element and the reciprocal of the grating element

1 .
{a+b) 'S known as the grating constant.

Hence, if light of wavelength A is incident on the grating,
we expect to find light diffracted through angles 6g= 0 [no

diffraction]; 8;=sin"! (—a%) [the first order of diffraction,
ie, n=1] 6 = sin"l (2= i ion, i
.e, n=1] 62 = sin (a+b) [second order of diffraction, ie.,n
= 2],
and so on . In practice, the intensity of the light diffracted at
any angle decreases rapidly as 6 increases. Thus, it is
probable that only first and second order diffraction will be
Seen.

Dispersive power of grating : Differentiating eqn. (1), we
have

@ ___n

dr ~ (a+b) cos®
Eqn. (2) gives the angular dispersive power of the grating,
iLe., its capacity to disperse different wavelengths. Evidently
dispersive power depends

(i) directly on the order of the spectrum n.

(ii) inversely on the grating element (a+b) and hence
directly on the number of rulings per cm.

(iii) inversely on cos8, i.e., directly on 8 and hence
wavelength A,

A diffraction grating is made by ruling equidistant’

parallel straight lines on a glass plate. The lines are ruled by
a diamond point moved by an automatic dividing engine

" sinf = nNA. Thus N =
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containing a very fine micrometer screw which moves
sideways between each stroke. The pitch of the screw must |
be constant so that the lines are as equally spaced as
possible, which is an important requirement of a good '
quality grating. As such a grating is very costly. What is
usually used in its place in the laboratory is a photographic
replica of the same, possibly prepared by contact printing on
a fine grained photographic plate. When using a replica,
never try to clean or touch its surfaces at any time. Whenever
it is to be handled, it must be held by the edges between the
thumb and the middle finger.

The diffraction gratings are of two types : transmission
type and the reflection type. The lines, mentioned above, act
as opaque spaces and the space between any two consecutive
lines is transparent to light. Such surface act as transmission
gratings. If on the other hand lines are ruled on a silvered
plane or concave surface, then light is reflected from the
positions of the mirror in between any two lines. Such
surfaces act as reflection gratings.
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EXPT. TO DETERMINE THE WAVELENGTHS OF
V. S SPECTRAL LINES BY A SPECTROMETER USING A
PLANE DIFFRACTION GRATING.

Theory : If a parallel pencil of monochromatic light of
wavelength A, coming out of the collimator of a spectrometer
falls normally on a plane diffraction gratihg placed vertically
on the prism table, a series of diffracted image of the
collimator slit will be seen on both sides of the direct image.
Reckoning from the direction of the incident light (direct
image), if 6 be the deviation of the light which forms the n'®
image and (a+b) be the grating element, then (a+b) sinf =
DA

Since a+b =§, where N is the gratingcbnstant i.e., the

number of lines or rulings per cm of the grating surface,

sinf sinf
... andk:——Nn...‘(2)
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By employing sodium light of known wavelength the
value of N can be determined first. Then from this
knowledge of N, the wavelength A of any unknown light can
be found out with the help of equation (2).
Apparatus : Spectrometer, spirit level, a prism, plane
diffraction grating, discharge tubes, etc.
Description of the apparatus : See spectrometer (Art.
5.4) and diffraction grating (Art.5.6),
Description of the apparatus : Spectrometer (See Art.
5.4).
Discharge tube : Gas discharge tubes, also known as Geissler
tubes, are widely used in the laboratory for spectroscopic
purposes. It is generally given in two shapes. The first one is
a straight glass tube, the central part BC of the tube being a
capillary having a length of about seven or eight centimetres
and a diameter of about one
millimetre. Two aluminium
or platinum electrodes are
sealed into this tube at the
two ends A and D (Fig. 5.45
B a). The tube is filled with
c At the gas, whose spectrum is
to be studied, at a pressure
of 1 or 2 mm of mercury.
More than 2000 volts poten-
(b) tial is applied between the
electrodes with the help of
~ an induction coil high tensi-
Fig. 5.43 on D.C. source (power pack).
The light comes from the positive column of the discharge
and is the most intense in the capillary whére the current
density is the highest. The second type, as shown in Fig,
5.43 b, also works on the same principle and is of H- shape.
The length of capillary tube in this design is only about 4
centimetres. Thus, it makes a source of greater intensity
than the first one. The intensity is still further increased if
the capillary is viewed end on. These tubs were used for
many years for the study of the spectra of substances which
could be obtained in the form of vapour or gas. They require

BC

{a)

e

~—"
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a high potential, still the operating current is only of the
order of few milliamperes which cannot heat the electrodes
sufficiently and therefore they are knwon as cold cathode
tubes.

Procedure : The preliminary adjustments for this
experiment are twofold (a) those of the spectrometer and
(b} those of the grating. :

(a) Make all the adjustments of the spectrometer
including focussing for parallel rays in the usual manner as
described in Art. 5.4.

The following adjustments should be made in connection
with the mounting of the grating. )

(1) To make the plane of the grating vertical and set it
Jfor normal incidence : (i) Focus the telescope towards the
direct light coming through the collimator. Note the
position of the telescope (direct reading). Then turn the
telescope through exactly 90°and fix it there.

(ii) Place the grating, mounted in its holder, on the
prism table. The grating should be so placed that the lines of
the grating are perpendicular to the table and the plane of
the grating, defined by the ruled surface, passes through the
centre of the table so that the ruled surface, extends equally
on both sides of the centre. At the same time, the grating
should be perpendicular to the line joining any two of the
levelling screws say E and F in Fig. 5.22.

(iij) Rotate the prism table till you get, on the cross-
wires of the telescope, an image of the slit formed by
reflection at the grating surface. The image may not be at the
centre of the cross-wires. If so, turn one of the screws till
the centre of the image reaches the intersection of the
cross-wires. In this position the plane of the grating has
been adjusted to be vertical. The angle at which light is now
incident on the grating is obviously 45°. Read the position of
the prism table, using both the verniers.

(iv) Now look carefully at the grating on the table and
ascertain whether the surface of the grating which first
receives the light is the one which also contains the lines.
(Allow the light to be reflected alternately from both the
surfaces of the grating and observe the image of the slit
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through the telescope, whose axis must be kept
perpendicular to that of the collimator. It will be found that

the image formed by one surface of the grating is brighter

than that formed by the other surface. The surface which
produces the less sharp image is the one which contains the
lines). If so, turn the prism table either through 135°or 45°
in the appropriate direction so that at the end of this
rotation the ruled surface will face the telescope, while light
from the collimator will be incident normally on the grating.

If it is the unruled surface of the grating which first
receives the light, then the prism table should be rotated
through an angle of 45°r 135° in the proper direction to
bring the grating into the position specified above. Fix the
prism table in its new position.

(2) To make the grating vertical : In operation (1) you
have made the plane of the grating vertical but the lines may
not be so. The grating would require a rotation in its own
plane to bring this about.

() Rotate the telescope to receive the diffracted image
on either side of the direct image. If the lines of the grating
are not vertical, the diffracted image on one side of the

direct image will appear displaced upwards while that on »

the other side will appear displaced downwards. But actually
the spectra are formed in a plane perpendicular to the lines
of the grating.

(ii) Now set the telescope to receive the diffracted image
in the highest possible order on one side and turn the third
screw of the prism table (G in Fig.5.22) till the centre of the.
image is brought on the junction of the cross-wires. This
SCrew rotates the grating in its own plane as a result of
which the lines become vertical. On turning the telescope it
will be observed that the centres of all the diffracted images
(on both sides of the direct image) lie on the junction of the
Cross-wires.

This completes the adjustments required for mounting
of the grating. Now proceed to take readings as follows:

(i) With sodium discharge tube placed in fornt of the
collimator slit, set the telescope on, say, the first order of
the diffracted image on one side of the direct image. Focus
the telescope and take the reading using both the verniers.

"

(\_/
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Then focus the teles-
cope on the diffracted
{ image of the same
order on the other side
of the direct image.
Again take the reading.
The difference betw-
een these two readings
is twice the angle of
diffraction for this
order of image. (Fig.
5.48). (Alternately you
can take the readings
of the diffracted image
and the direct image.
Fig. 5.4 4 The difference is ‘the

angle of diffraction. But the previous method is to be
perferred since it minimises error in observation).

(ii) Similarly measure the angle of diffractions for the
second order, third order and so on. During these
measurements the width of the slit should be as narrow as
possible. The readings for each diffracted image should be
taken at least three times for three independent settings of
the telescope. The cross-wires should always be focussed on
the same edge of the image of the slit.

(iii) With the help of equation (1), compute N from the
known values of the wavelength for sodium-D lines and the
angles of diffraction obtained for two or three of the highest
orders of the spectra.

Note : In case the Na-D (yellow) lines are not resolved
then the cross-wire should be focussed on the middle of the
image. In that case calculate N by assuming A to be 5893 A.U.
But if the lines Dy (56890 A.U.) and Dy (56896 A.U.) are -
resolved readings should be taken for each of these lines and
N should be computed separately from each set of readings.

(iv) Replace the sodium discharge tube by another
discharge tube, say of helium, which should be mounted
practically in contact with the slit. Instead of one or two
lines as in the case of sodium, you will now see a large
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number of spectral lines of different colours. Adjust the
position of the discharge tube till the spectrum look
brightest. Identify the different lines of the spectrum (see
discussion) and for each line determine the angle of
diffraction for as many order as possible in the manner
described in operations (i) and (ii). Then from the
knowledge of the grating constant N and the order of
diffraction n, calculate the wavelength of each of these lines.
Compare them with the values obtained from the table.

(v) Replace this discharge tube with another, say of neon.
Calculate the wavelength of the prominent lines of the

spectrum in the manner described above and compare them
with the values given in the table.

Results :

Vernier Constants : Determine the vernier constants in
the manner shown in expt.44

Practical Physics
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Table for the determination of the grating constant

Reading for the dangle of diffraction ©
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Table for the determination of wavelengths
Heltumn Tube

Hetium Tube

b
° Readings for the angle of diffraction © = §
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Note : Make similar tables for other discharge tubes.
Tables above refer to one of the two verniers used. Similar
tables may be made for the other vernier.

Oral Questions and their Answers.

-

1. What s a diffraction grating?

See Art. 5.6

2. How is a grating constructed? What is a replica grating?
See Art. 5.6

3. What is grating element?
See Art. 5.6

4. What are corresponding potnts? _
When two points in the consecutive slit are separated by a
distance (a+b), the grating element, then these two points are
known as corresponding points.

5. .What happens {f the number of rulings per cm (N) s efther
Increased or decreased? .
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If N is increased, the order number will be few but they will be
separated by a large angle. If N {s decreased, the order number
will be large, but separated by a small angle.

6.  Why is {t necessary that the ruled surface be directed towards
the telescope?
If the ruled surface is directed towards the collimator, then
the incident rays will first fall on this surface and will be
diffracted. But then these diffracted rays will have to pass
through a finite thickness of the glass plate and as such will be
refracted again. Hence the angle (8) measured, is not due to
diffraction alone, but will be due to combined effect of
diffraction and refraction.

7. How does a grating form a spectrum?
See a text book. .

8. How does this spectrum formed by a grating differ from that
Jormed by a prism?
Provided the angle of diffraction 8 is not very large, then the
angle of diffraction in the grating spectrum is proportional to A
but in case of prismatic spectrum, the violet end is more
drawn out than the red end. Hence the spectrum formed by a
grating may be regarded purer then that formed by the prism

9. What do you mean by ghost lines?
If the rulings on a grating are not exactly equidistant or
accurately parallel, then some additional lines appear near the
real spectral lines. These additional lines are called ghost
lines.

10. What do you mean by resolving power of a grating?
See a text book.

11. What (s meant by dispersive power of a grating?
See art. 5.6

Art. 5.7 Polarization of light

Light is emitted in the form of wave trains by individual
atoms when in an excited state. The wave trains are
transverse in nature, ie., the vibrations are at right angles to
the direction of propagation of the wave. A beam of natural
light consists of millions of such wave trains emitted by a
very large number of randomly oriented atoms and
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molecules in the light source and, therefore, natural light is
a random mixture -of vibrations in all possible transverse
directions. -
Looking at such a bean end on, there should be just as
many waves vibrating in one plane as there are vibrating in
.any other as shown in Fig.
5.47 This is referred to as
perfect symmetry. As light
waves are transverse in
nature, each vibrations of
Fig. 5.4 5can be resolved
into two component vibrat-
ions along two planes at
right angles to each other
and also perpendicular to
the direction of propagation
Fig. 5.4% of light. Although these two
components may not be equal to each other, the similarly
resolved components from all waves will average out to be
equal. Thus a beam of ordinary unpolarized light may be
regarded as being made up of two kinds of vibrations only.
Half these vibrations vibrate in a vertical plane , say along the
plane of the paper, and are referred to as parallel vibrations
indicated by arrow as in Fig. 5.48 (ii). The other half vibrates
perpendicular to the plane of the paper and are referred to
as perpendicular vibrations indicated by dot as in Fig. 5.48
(iii). Fig. 5.43 (i) will then represent a beam of ordinary
unpolarized light.

If by some means the
4 vibrations constituting
W the beam of ordinary

unpolarized light are
fm) confined to one plane,
' the light is said to be
plane polarized. Polar-
ization is, therefore,
the process by which
light vibrations are
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-
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Fig. 5.46
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{a)
{b}
(a) and (b) are mutually perpendicular readings at the
same place.
Mean diameter of the wire, d = ... cm,
{c) Readings for the balance point.

Known Positions of Balanee point (for ) X Mean
pesistance | Unknow | Known 100-1 ohms X
Rin n resist- Direct | Reverse Mean

ohms Fesistance ance

X R
Left Right I=.. 100-1
Right Left L= 100-1
Left Right
Right Left

Note : When X is in the left gap calculate its value JSrom
(1) and when X is in the right gap calculate its value Jrom
(2). Specific resistance of the material of the given wire is

. Xnr? Xnd?2
givenbyp = "L T T4 =---...0hm-cm

at the room temp ... °C.

Discussions : (i) See that the null point is not far away
from the middle.

(i) It is essential to see that none of the plugs in the
resistance box R is loose.

(iii} Take care to determine the diameter (d) of the wire
Very accurately.

(iv] On reversing the current if the null point changes
appreciably, the thermo-electric effect is too large. In such a
case close the galvanometer circuit keeping the battery
circuit open. The deflection of the galvanometer should be
taken as the zero when looking for a null point.

(v) E.m.f. of the cell should be checked before starting
the experiment.
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Oral Questions and their Answers.

1. What is meant by spectfic reststance and what Is its unit?
Resistance of unit cube of the material. t.e., a material having
unit length and unit cross-section. Its unit is ohm-cm.

2.  On what factors does the specific resistance depend?

It depends on the material and its temperature. It is higher at
higher temperature. It does not change with length or
diameter of the wire.

3. Why s it necessary (i) to tnterchange the resistances and {i1)

to reverse the current?
(i} The pointer which indicates the null point may not be
situated exactly above the fine edge of the jockey which makes
contact with the bridge wire. This is known as tapping error.
This is eliminated by interchanging the resistances. (i)
Reversing the current eliminates the effect of thermo-current
in the circuit. '

4.  While using a plug key as shunt of the galvanometer, will you
use It alone or with a resi{stance?

The plug key should be used as a shunt with a resistance
otherwise the galvanometer may not show any deflection when
the plug is put in the key because in that case all the current
passes through the shunt and no current passes through the
galvanometer. When a resistance is used with the key, the
galvanometer shows a deflection with the shunt and without

the shunt.

EXPT. 36. TO DETERMINE THE VALUE OF AN UNKNOWN
RESISTANCE AND TO VERIFY THE LAWS OF SERIES AND
PARALLEL RESISTANCES BY MEANS OF A POST OFFICE
BOX.

A. Determination of the value of an unknown resistance :

Theory : If P and Q are the known resistances in the ratio
arms and R that in the third arm (see Figs. 7.29 and 7. 30).
the unknown resistance S in the fourth arm is obtained,
when there is no deflection of the galvanometer, from the
relation



372 Practical Physics

P_R _R@
Q=5 or S= P

Apparatus : P. O. Box, unknown resistance, zero-centre
galvanometer, cell, commutator, connecting wires, etc.

Description of the apparatus : See Art. 7.9

Procedure : (i) Connect the terminals of the
galvanometer between D and Ky of the P.O. box (Fig 7.29), Ky
being internally connected to the point B. Connect the poles
of the cell E through a rheostat Rh to the point K; and C, K;
being internally connected to A. Connect the terminals of
unknown resistance S to the points C and D.

(i) Take out resistances 10 and 10 {rom the ratio arms
BA and BC. See that all other plugs in the box are tight. This
means zero resistance in the third arm. Put the maximum
resistance in the rheostat. Press the battery key K; and then
press the galvanometer key Ky. Observe the direction of the
deflection in the galvanometer. Next take out the infinity
plug from the third arm and press the keys as done before. If
opposite deflection is obtained then the connection is
correct. If not check the connections again.

(iii) Then go on gradually reducing the resistance in the
third arm until a resistance, say R; , is found for which there
is no deflection in the galvanometer when the circuit is

closed. Then the unknown resistance S is given by
10

S=7pR1 =Ry {say 5 ohms).
(iv) If instead of null point, there is a deflection in one
direction with R; and an opposite deflection with (R} + 1)
in the third arm, the unknown resistance is partly integral
and partly fractional ie., it lies between 5 and 6 ohms.
(v) Now take out the resistance of 100 ohms in the arms
P (BA) keeping 10 ohms in the arm Q (BC) so that the ratio

is now % = % = 1LO Hence the null point should occur when

the resistance in the third arm is of some value between
10R; and 10(R; + 1) i.e., between 50 and 60 (if R; =5).
‘Observe the opposite deflection and as before narrow
down the range to obtain the null point at Ry = 53 (say).
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Then S = ?—g = 5.3 ohms. In that case, the resistance is found
correct to one decimal place.

(vi) If the null point cannot be obtained at this stage also
ie., if opposite deflections are observed for Ry and Ry + 1
(viz. for 53 and 54) in the third arm, it lies between 5.3 and
5.4 ohms. Repeat the observations with 1000 ohms in P arm
and 10 ohms in Q arm. The resistance in the third arm
should be between 530 and 540 for which opposite
deflections will be obtained. Narrow down the range to

obtain a null point at Rg = 535 (say).
Then S = 1_136 = 5.35 ohms (say). The resistance is now
correct to two decimal place.

(vii) If even at this stage there are opposite deflections
for a change of resistance of 1 ohm in the third arm, the
unknown resistance can be determined to the third decimal
place by proportional parts. But it is futile to expect that
much accuracy from the P.O. box. However, if it is desired to
go further, proceed as follows: Count the number of divisions
for which the galvanometer is deflected when Rg is put in
the third arm. Suppose it is d; divisions to the left. If now
for (Rg + 1) in the third arm, the deflection is da to the
right, then for a change of 1 ohm in the third arm, the
pdinter moves through d; + dg divisions. Hence to bring the
pointer to zero of the scale (i.e., for no deflection) a resistan-

ce Ry + —L_— s to be inserted in the third arm. Hence the
dl + d2

value of the unknown resistance S is given by S = '1%)6 (Rs +
d
dl + d2
(viii) While taking the final reading with the ratio 1000:
10, reverse the current and take mean value of S.
Results : See table on next page
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Resistance in ohms

Direction of

Inference :

Arm Arm  Third arm Deflection. Third arm resist-
Q P R ance is
10 10 0 Left Too small
right Too large
100 " "
50 " "
20 "
10 " Large
7 . .
6 . "
5 Left Small
The unknown
resistance lies bet-
ween 5 and 6 ohms
10 100 60 right Large
50 left Small
55 right Large
54 " "
53 left Small
The unknown
resistance lies bet-
ween 5.3 and
5.4 ohms
10 1000 539 right Large
531 left Small
533 " "
534
535 7 div. to the left
a { S= L (5354 L)
536 14 div. to the right 100 17
= 5.354
536 8 div. to the left
b { s=-(s35+5)
535 6 div. to the right 100 14

= 5.354 ohms.

Mean S = 5.354 ohms.
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Note : Numerical values are not actual readings, they are
Jor illustration. {a) and (b) are direct and reverse readings.

Precautions to be taken in performing experiments with
a P.O. Box.

(i) In experiments with P.O. Box, a cell of any kind may
be employed. The galvanometer will remain unaffected for
zero potential difference at its ends and there will be no
change in the null point. However, the e.m.f. of the battery
used in the experiment must not be very high, other wise
the standard resistance coils will be damaged by the
production of much heat in them. If a storage cell is used, it
should always be connected in series with a rheostat of at
least 100 ohms to prevent the flow of stronger current
through the box. A cell which gives an e.m.f. of about 2 volts
should be preferred for the purpose.

(i) The battery circuit should be completed before the
galvanometer circuit to avoid the effect of self-induction.

(iii) The battery key should be closed for that minimum
time which is required to find a null point. The battery
circuit should be kept open for about two minutes before
taking up the next determination of the null point.

(iv) When a very sensitive galvanometer is used, a high
resistance in series with or a low resistance in parallel to the
galvanometer should be applied during determination of
approximate null point. For getting the exact null point the

series resistance should be reduced to zero or the shunt
resistance made infinite.

(v) Every plug of the P.O. Box should be given a turn
within its socket to remove the oxide film between the
surfaces of contact. This film, if any, introduces an extra
resistance.

{vi) The bridge becomes most sensitive when the
resistances in the four arms of the bridge are equal. When
employing a P.O. Box to measure a resistance not exceeding
200 ohms, the ratio 10 : 1000 makes the bridge insensitive.
Hence it is unnecessary to use this ratio.
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Again in measuring resistance lying between 100 to 1000
ohms, it is advisable to use the ratio 100: 100 and 100: 1000
for greater accuracy.

(vii) Sometimes it is found that the limiting ranges with
equal ratio do not agree with higher ratio. This may be due
to (a) looseness of plugs which should be tightened or (b)
resistance of some coils having different values from those
noted against them. To remedy this, use different sets of
coils making up the required total.

(viii) The position of the null point does not change
when the positions of the galvanometer and the battery are
interchanged. This means that the position of the null point
is independent of the resistances of the galvanometer and
the battery. ‘

(ix) The sensitiveness of the bridge is affected by the
resistances of the galvanometer and battery; the lower their
resistances, the greaier is the sensitiveness of the bridge. To
increase the sensitiveness, the galvanometer or the battery
whichever has the greater resistance should be placed
between the junction of the two arms having greater
resistance and the junction of two arms having smaller
resistance.

{x) Neither very high nor very low resistance can be
measured for reasons discussed in the description of P.O.
Box {Art.7.9)

B. To Verify the Laws of Series and Parallel Resistances :

Theory : Resistances are said to be connected in series
when they are connected with the end of one joined to the
beginning of the next and so on as shown in Fig. 7.34 (a).

The equivalent resistance to a number of resistances
connected in series is equal to the sum of the individual
resisiances, i.e.,

R=rn+rp+r3+.....c...ol (1)

When resistances are arranged with their respective
ends connected to common terminals, they are said to be
connected in parallel as shown in Fig. 7.34 (b)
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Fig. 7.34
The reciprocal of equivalent resistance to a number of
resistances connected in parallel is equal to the sum of the

reciprocals of the individual resistances, i.e.,
L L L e @)

R_H+a+m+

Measuring rj, Tz, r3 etc. separately and the equivalent
resistance R by connecting them in series and in paraliel,
the relation (1) and (2) may be verified.

Procedure : (i) Measure the resistances, rj, rg, r3 etc.
separately by means of a P.O. Box as in expt. 59A.

(i) Join the resistances rj, rp, r3 etc. in series as in Fig.
7.34 (a) and determine the equivalent resistance of the
series combination by means of the P.O. Box. Show that
relation (1) holds good.

(iii) Connect the resistances in parallel as in Fig. 7.34 (b)
and determine the equivalent resistance of the parallel
combination as before. Show that relation (2) holds good.

Results : Record data for rj, rg, r3 etc. and for the
combination in the same tabular form as in expt. 56A. | From
the observed and calculated values of the equivalent
resistances thus obtained, show that they are equal within
the limits of experimental error. This verifies relation (1)

and (2).
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Oral Questions and their Answers.

1. What (s a P.O. Box and why (s it so called?
It is a compact form of Wheatstone's bridge in which three
arms are given. It was originally intended for measuring the
resistance of telegraphic wires in the British Post Office; hence
the name.

2. What Is the principle on which (t works?
Principle of Wheatstone's bridge.

3. Is it suitable for measuring very high or low resistance?
How (s tt that sometimes the limits found with equal ratio do
not agree with those found with a higher ratio?
See precautions vii and x.

4. If the resistance cotls of the box be calibrated at 20; will they
glve the same value at other temperatures?
No, the resistance of metals increases with temperature.

7. 10 Uses of Suspended Coil Type Galvanometer

In using a suspended coil galvanometer (for descirption
and adjustment see Art. 7.3) the following precautions -
should be taken.

(i) The source of current (i.e., the battery) should never
be directly connected with the galvanometer because the
flow of heavy current may burn the coil and suspension wire.

(i) A high resistance should be connected in series with
the galvanometer and a shunt box should be joined in
parallel to it. By gradually increasing the resistance in the
shunt box, the desired deflection may be obtained.

(iii) The galvanometer goes on oscillating for a long time
if the coil is wound on a non-conducting frame. To bring the
coil to rest quickly a tapping key should be joined in parallel
to the galvanometer. At the desired moment of stopping the
oscillation the key should be suddenly closed and the
oscillation will stop.

(iv) For the determination of null point and for the
measurement of large current, a low resistance galvanometer
should be used. For the measurement of small current and a
large potential difference, a high resistance galvanometer
should be used. For measuring charge; a ballistic
galvanometer should be used.

given by
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EXPT. 57. TO DETERMINE THE FIGURE OF MERIT OF A
GALVANOMETER.

Theory : The figure of merit or current sensitivity of a
galvanometer is defined as the current in amperes (or in
micro-amperes) required to porduce a deflection of the light
spot by one millimetre on a scale placed normal to the beam
of light at a distance of one metre from the galvanometer
mirror. In the arrangement as shown in Fig. 7.35, the
current C drawn from the battery is given by

C=""5G

R+-S-:G‘
where R.S and G are the series, shunt and galvanometer

resistances respectively and E is the e.m.f.of the cell.
But the current Cg flowing through the galvanometer is

S ES

Ce=C. S, G =R©G+0)+5G "
If this current (Cg} produces a
deflection of the light spot by d
mm on a scale placed at a
distance of D cm from the

S galvanometer mirror, then the

deflection N mm which will be

produced if the scale be placed

G

R at a distance of 100 cm from the

mirror is

100d
N=—"x"

Hence the figure of merit F of
Y galvanometer, by definition, is
given by
C__D ES
H—— P=N =1008* RS+ 0) + 5G "
E As SG is very small compared to
Fig. 7.35 R (S + G), it may be neglected.
Apparatus : Suspended coil galvanometer (G).
accumulator (E), high resistance box (R) with 10,000 ohms
or more, a low resistance box (S) for shunt, commutator (K).

2)
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The shunt protects the galvanometer from damage by allowing
the large proportion of the main current to flow through it,
thereby reducing the current through the galvanometer.
5. What will be the change in the galvanometer deflection Jor a
change in the shunt resistance?
The galvanometer deflection will increase with the increase of
shunt resistance and will decrease with decrease of shunt
resistance.
6. What should be the galvanometer deflection tn this experiment
and why?
The current is proportional to the deflection when the latter is
small. This happens when the deflection is round about 10 cm.
7. What will be the resistance of a shunted galvanometer?
Even less than the resistance of the shunt applied.

ﬁ. 58. TO DETERMINE THE RESISTANCE OF A

GALVANOMETER BY HALF-DEFLECTION METHOD.

Theory : In the arrangement shown in Fig. 7.36 if the
shunt resistance S is very small compared to the
galvanomeler resistance G, then the potential difference (V)
between the ends of the shunt resistance S remains nearly
constant for all values of Ry.

Thus when R)= O, then the galvanometer current Cg is

gvenby &=kd.. .. .. (1)

where d is the deflection of the spot of light on the scale
and k is the galvanometer constant. If now a resistance R; is
introduced in the galvanometer circuit such that the

deflection reduces to %
, \% d
then Cg: m: k§ ...... (2)

where C'g is the new galvanometer current in the
changed circumstances.

Dividing (1) by (2), we get

G+R
::, 1=2, or G+R; = 2G
of G=Ru. i voi it ()

\//‘
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Hence by simply measuring R;, G can be found out.
Apparatus : Suspended coil galvanometer, shunt box S,
resistance R and R;, commutator K, cell E, connecting
wires. A
Description of the apparatus : 3"/
i. Galvanometer : Art. 7.3
ii. Commutator : Art. 7.1
Procedure : (i) Make connection as shown in Fig. 7.36.
Bring one sharp edge of the spot of light at the zero mark of
the scale. _
(ii) Insert a resistance (R) of the order of 1000 ohms in
the battery circuit. Make Ry = O by putting all the plugs in
the box. Begining with the smallest value (S = 0.1 ohm) of
the shunt resistance S, go on increasing S until you obtain a
deflection of about 10 cm on the scale. Note this deflection.
(iii) Keeping the resistance R

. )
constant, adjust the value of the \7)
resistance R; until the deflection ! G
is reduced to half of the former. Rig
Record this value of R; which is
the value of the galvanometer sv‘v—

resistance G. '

(iv) Stop the current in the

circuit and examine if the same R
sharp edge of the spot of light is

still at zero of the scale. If not,

adjust the scale to bring it to

zero. Make the value of R; zero

and keep R the same. Now

reverse the current with the
commutator K. Repeat the whole

operation to get another value of E

G Fig. 7.36

(v) Keeping the value of the rsistance R the same, change
the value of the shunt reesistance S to obtain a different
deflection of round about 10 cm and similarly determine the
value of G.

(vi) Repeat the operation three times with different value
of R in the battery circuit and two values of S for each R.
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Results : In the following table R is the resistance in the
battery circuit and R; is the resistance in the galvanometer
circuit and G is the galvanometer resistance to be
determined. Numerical values are only examples.

No. Resistance Shunt Resistance | Deflec- | G=R; | MeanG
of | Cumrents | R inohms | resistance Ryin tions ohms n
ohs S in chms ohms ohms

Direct 1000 0.1 0 10.6
" " 80 5.3 80
1 | Reverse ! ' 0 10.4 81
' ' 81 5.2
Direct ' 0.14 0 10.2 80
! ' 80 5.1
2 | Reverse ! ' 0 104
' ' 79 5.2 79
Direct 750 0.16 0 '
3 | Reverse ' ' 0
elc.

Discussions : (i) The series resistance R should never be
made equal to zero when the circuit is closed otherwise the
galvanometer will be damaged.

(ii) For a steady deflection a storage battery should be
used.

(iii) The position of the scale should be normal to the
beam of light when no current flows through the
galvanometer.

Oral Questions and their Answers.

1. What is meant by the term galvanometer resistance?

The resistance of a galvanometer is the resistance of the coil
of wire wound over a rectangular frame kept suspended
between the pole pieces.

2.  Why do you maintain the devtation near about 10 cm?

If the galvanometer is not provided with concave cylindrical
pole pieces the current is not proportional to the deflection
and hence the deflection of the spot of light is kept small, say
near about 10 cm. Even when the galvanometer is provided
with concave pole pieces the current is proportional to tan#,
where 6 is the angle of rotaion of the coil in radian and is
small.

for Degree Students ,\/ 385

3. Is the method applicable for galvanometer of any resistance?

The method is applicable for galvanometer of high resistance
only. In case of a low resistance galvanometer, the shunt
resistance becomes comparable and the method fails.

4. How do you find the reststance of a galvanometer. when the
resistance is very low?
In the case of galvanometer of low resistance, it is best to
clamp the coil and to find its resistance by a metre bridge or
P.O. Box

5. Will you prefer a low or high resistance of a shunt?
Theory shows that the method gives a correct value of the
galvanometer resistance when the shunt is very low. So a very
low resistance of the shunt is preferred.

EXPT. 59. TO DETERMINE A HIGH RESISTANCE BY THE
METHOD OF DEFLECTION.

Theory : In the arrangement of Fig.7.37, if the unknown
resistance X (of the order of not
less than 10% ohms) is included in G

the battery circuit by closing the ——-@——‘

gap OB; and if S; be the value of
the shunt resistance S and d; cm

be the deflection of the spot of MW
light on the scale, then the €y Ca
current Cg flowing through the o—1
galvanometer i}sz Sgiven by K
Ce= XE+0) 356 = ki (D e, T
where k is the constant of o
proportionality.
If now the known resistance R is By B
introduced in the battery circuit
by closing the gap OBy and if S be X
the shunt resistance and dg be the
deflection (nearly equal to dj) of ' 1 2
the spot of light on the scale, then E

the galvanometer current Cg is
given by Fig. 7.37
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Discussions : (i) If the galvanometer be not sufficiently
sensitive then while taking the final reading for the null
points, the resistance R' in the galvanometer circuit should
be made zero.

(ii) While taking reading for the cell E;, the key Ko
should be kept open to avoid unnecessary heating of the
current circuit containing Rg.

(iii) Current should be allowed to flow in the
potentiometer only when readings for null points are taken

(iv) The potentiometer circuit should be kept open for
sufficient time before next operation is taken up, to allow
the heat generated in the wire in the former operation to
dissipate.

Oral Questions and their Answers.

1. In this experiment, do you measure the current or potential
dtfference?
In fact the p.d. across the known resistance is measured and
then we get the current by dividing the p.d. by the known
resistance.

2. What are the practical units of current and potential
difference?
The unit of current is ampere and that of the p.d. is volt. By

Ohm's law they are related as
Volt )

i= %(t.e., Ampere = ohm'*
3. Can you measure resistance by potentiometer?
Yes, by determining the p.d.(e} across the unknown resistance
(R) we can find the value of the resistance by applying Ohm's

law which gives t=%. The current { flowing through the

unknown resistance can be determined by introducing a
copper voltameter in the circuit.

4. Why do you try to take the null point in the last wire?
This makes the balance length large and the percentage error
in the result small.
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EXPT. 66. TO DETERMINE THE INTERNAL RESISTANCE
OF A CELL BY A POTENTIOMETER.

Theory : A cell or any other source which supplies a
potential difference to the circuit to which it is connected
has within it some resistance called internal resistance.
When there is no current in the cell i.e., at open circuit, the
potential difference E between its terminal is maximum and
is called its electro-motive force (e.m.f). When the cell is
discharging i.e., at closed circuit, its terminal potential
difference is reduced to e because of the internal drop of
potential across its internal resistance b.

In Fig. 7. 48 the balance point for the cell E; whose
internal resistance b is to be determined, is found out as
usual, at a distance [; from the end A of the potentiometer
with key Ky open. Then a resistance R is introduced in the
resistance box RB and the key Ky is closed. The potential
difference between the terminals of the cell E; falls as a
current i begins to flow through the circuit. A balance point

is now found at a distance lg from the end A of the

potentiometer. As E and e are the potential difference at the

R.B
K
+ _ 2
E
o
E G
- I s J
A
N
" o8
) o
Ky
Fig. 7.48
open and closed circuits and b is the internal resistance of

the cell, we have b = E;e where iis the current flowing

through the circuit when the key K is closed. Again i=%
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b=E‘_‘£

E
p R = (-e—- DR... ..o vee ree weeaee o (1)

But as E and e are proportional to [; and lp, we
E_L
have e~ I

- from (1), b = (% -1} R = hl—z—l—z-R e (2)

Apparatus : Potentiometer, battery E, cell E;, resistance
box R, rheostat Rh, two keys K; and Kz, zero-centre
galvanometer G, connecting wires.

Procedure : (i) Connect the positive terminal of the
battery E to the binding screw A of the potentiometer and
the negative terminal of the battery through Rh and the key
K; to the binding screw B of the potentiometer (Fig. 7.48).
Join the positive terminal of the cell E; whose internal
resistance is to be determined, to the binding screw A of the
potentiometer and its negative terminal through the
galvanometer G to the jockey J. Also connect the resistance
box R.B through the key Ky to the two terminals of the cell
E;. It is better to put a shunt across the galvanometer.

(i) Adjust a small resistance in the rheostat Rh and close
the key K,.Keep the key Ko open and press the jockey first
near the end A and then near the end B of the
potentiometer wire. If the galvanometer deflection are in the
same direction, then either the resistance in Rh is too great
or e.m.f. of E is too small. Decrease the resistance in Rh until
‘the opposite deflections are obtained at the above two
contact points. If necessary, increase the number of cells in
the battery E. Adjustment of Rh should be such as to get a
null point on the fifth or sixth wire.

(iii) Remove the shunt of the galvanometer (if any) and
find out the balance point accurately. Open the key K; and
calculate the distance l; of the balance point from the end A
of the potentiometer wire (see discussion i, expt. 66).
Determine [} three times and calculate the mean value of ;.

(iv) Close the key Ko without changing Rh and take out a
resistance 10 ohms from the R.B and determine the balance
point and calculate the distance lp of the balance point from
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A. Then remove 20,30,40,50 ohms {rom R and determine
the value of Iy in each case.

(v) Calculate the value of b from the relation (2) for each
value of R and then calculate the mean value of b.

Results :
Value of Internal Mean
No | Circuit | Resistance resistance | b
of inR L Mean [, b of the cell | ohms
obs ohms. cm L em  cm
open infinity - -

1 closed 10 - -

2 closed 20 - -

3 closed 30 - -

4 closed 40 - -

5 closed 50 - -

Discussions : (i) The internal resistance of a cell depends
on the strength of the current. It decreases as the current
increases. It is, therefore, hetter to change the external
resistance over a range of 40 ohms and then to calculate the
mean value of b.

(ii) After every reading, the key K; should be opened to
allow the wire to cool.

(iii) Care should be taken to see that Ky is open when
determining [;,

(iv) The internal resistance of a cell can be determined
with voltmeter and ammeter also but this method is more
accurate.

Oral Questions and their Answers.

1. What do you understand by the internal resistance of a cell?
When the external circuit is complete, within the cell a current
flows from the plate at a lower potential to the plate at higher
potential and the medium between the plates offers a
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resistance to the flow of the current. This resistance is known
as the internal resistance of the cell. It is the resistance in
ohms obtained by dividing the difference in volts between the
generated e.m.f. and the potential difference between the
terminals of the cell by the current in amperes. See theory.

2. On what factor does internal resistance of cell depend?

It depends on

(a) the conductivity of the medium between the plates.

(b} the distance between the plates

{c) the area of those portions of the plates that are immersed in
the electrolytes.

3. Name cells of high and low internal resistance?

The internal resistance of Daniel cell is high while that of a lead
accumulator is low. In case of a lead accumulator the distance
between the plates is small and the area of the immersed
portions of the plates is great.

4. Show a relation between the e.m.f. E and internal resistance r
of a cell when a resistance R s put {n the external ctrcuit round
which a current 1 flows.

E=ir+iR where (r is the internal voltage drop which is the
product of the current and the internal resistance and
i R is the external voltage drop.
5. Is the internal resistance of a cell constant?
No. See discussion (i).

6. Do you know of any other method of determinig the internal
resistance of a cell?
See discussion (iv).

EXPT. 67. TO CALIBRATE AN AMMETER BY POTENTIAL
DROP METHOD WITH THE HELP OF A POTENTIOMETER.

Theory : In the Fig. 7.49 the driving battery E sends a
steady current C in the potentiometer circuit creating a
drop of potential p volts per unit length of the potentiometer
wire AB. In the auxiliary circuit containing the ammeter Am,
let e be the drop of potential betwen the potential leads T,
and T3 of the low resistance Ry. If corresponding to the
potential leads T} and Ty, balancing lengths [; and Iy are
obtained in the potentiometer wire AB, then
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e = pllg-1y)... e e eee ene (1)
If R, and R be the resxstance of the potentiometer wire
and that in the box R; and E be the e.m.f. of the driving

battery then C = RERP amp. So the voltage drop across the

total length L of the potentiometer wire is V =CR
= ER,/R+R;, volts.

In that case, p =% =ERp/(R+Rp) L volts / cm. (2)

Hence from (1) and (2)

e = ERplla-11)/(R+Rp) L volts. (3)

So the unknown current i flowing in the auxiliary circuit
is given by

=8 = ERplb-l) - @

Ro (R+RP)L.R2

Now if the ammeter Am in the auxiliary circuit reads ¥’
amperes, then a correction (i- i) is to be added algebraically
to the reading i’ of the ammeter. If for different values of 7,
the corresponding corrections (i-i) are found out, then a
graph may be drawn with ' as abscissa (X-axis) and the
correction (i-i) as ordinate (Y-axis). This gives the
calibration curve of the ammeter.

Apparatus : Potentiometer, storage cells, ammeter Am,
low resistance Ry, zero-centre galvanometer, high resistance
R, resistance box Rj, plug key K, K; and Ky, two-way key Ks,
rheostat Rh.

Connections of the apparatus : In the unknown current
circuit, a battery E; is connected to an ammeter Am and
through a rheostat Rh and a key Ky to the two current leads
of a low resistance Ry so that they form a complete circuit.
The current that flows in this circuit is read off from the
ammeter and also determined by measuring the potential
drop across the low resistance Rp and then the two are
compared.

In the potentiometer circuit the positive of a battery E
(usually alkali cells) is joined to the binding screw A of the
potentiometer wire while the negative terminal of the
battery is connected to the binding screw B of the

T g
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EXPT. 73. TO DETERMINE THE TEMPERATURE CO-

EFFICIENT OF THE RESISTANCE OF THE MATERIAL OF A
WIRE. ‘

Theory : The temperature co-efficient of the resistance
of the material of a wire may be defined as the change in
resistance per unit resistance per degree rise in
temperature. '

If Ry and R, are the resistances of a coil at temperatures
t2"C and t;°C respectively, then

Rg = R1(1+(X.t)

where a is the mean temperature co-efficient between
the temper}gtu};e to and t; and t = ty-t;

o= }?{1t1 per'C ... ... (1

Measuring R1,Ry, t; and tg, o may be determined.

Apparatus : Resistance wire, metre bridge, cell, rheostat,
commutator, galvanometer, hypsometer, etc.

Procedure: (i) Take a coil of wire wound non inductively on a

)

}._..__.
o wyl
2 9
G

Fig. 7. 55
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mica frame and immerse it in a glass tube G containing oil.
Close the glass tube with a cork and through a hole in it,
insert a thermometer. Insert the tube with its contents
inside a hypsometer through an opening in the cork at its

top. :

(ii) Make connection as shown in Fig. 7.55. Join the coil

R of which the temperature co-efficient is to be determined
to the gap G, of the metre bridge through two connecting
wires. Join a resistance box S in the gap Gg. Connect the
battery E (usually a Leclanche's cell) to binding screw A and
B of the metre bridge through the commutator K'and a
variable resistance Rh. Join the two terminals of a
galvanometer to the binding screw at O and the jockey J.
Connect a resistance box and a plug key in parailel to the
galvanometer. A ;

~ (iii) After making connection as described in operation
(ii) take out suitable resistance from the box S and find the
balance point, both for direct and for reverse currents. The
resistance in S should be so chosen that the null point lies at
the central region of the metre bridge wire. Record the
room-temperature t;°C from the thermometer. Repeat the
operations three times with three different values of the box
resistance. Interchange the position of the resistance coil
and resistance box in the gaps Gg and G) and for the same
set of values of the resistance box repeat the operations as
before.

(iv) Boil some water in the hypsometer and go on noting
the temperature of the resistance coil. When the
thermometer reading shows a steady maximum value t2’C,
find out the null point. Interchange the positidns of the
resistance coil and resistance box and determine the nyll
point again. In each case take three readings for three
different values of the resistance in the box S. As before, the
balance point should lie in the central region of the bridge
wire.

(v) Calculate the resistance at the two temperatures and
find the mean values. Then calculate a from relation (1).

o
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Results :
(A) Readings for R; and R, at temperature t1=.."Ctg=..."C
Resistance in Null points with Mean
No null | Unknown}] Mean
Temp. of | Leftgap Right Direct | Reverse | point | resistanice { resistance
obs. ohm gap current | current cm ohm ohm
ohm om an
t°C 1 Ry ISi(known)
2
3
4 51 R
5
6 =R1
t*C 1 |Saknown R;
=. 2
3 Ry -
4 S,
5 =R,
6
o = Ry- Ry .
= TR S o per’C

where t= ty-t;

Discussions : (i) Care should be taken that the
hypsometer and the burner do not heat any other electrical
accessories of the experiment.

(ii) While making preliminary adjustment the shunt for
the galvanometer should be used. Final adjustments for the
null points should be made without the shunt.

(ii) Thermometer reading should remain steady for at
least five minutes before readings for balance point are
taken. The correct expression is Ri=R,(1+at+Bt2) where R,
and R, are resistances at t°C and O°C respectively. For small
ranges of temperature (say not exceeding 100°C), B is
negligibly small so that the resistance is practically the
linear function of the temperature and eqn. (1) is
approximately correct.
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(iv) For most pure metals , resistance increases with
temperature but for certain alloys such as manganin and
constantan, there is no change in resistance with the
changes of temperature within a certain range. For carbon,
resistance decreases with temperature and hence a is
negative. a is also negative for most insulators and

electrolytes.

Oral Questions and their Answers

1. What is temperature co-efficlent of resistance and what (s its
unit?

It is the increase in resistance per unit resistance per degree
rise in temperature. Its unit is ohm per 'C.

2.  Why does the reststance of metals change with temperature?
Conduction in metals is due to the directive movement of the
free electrons under a potential difference. When the
temperature rises, the random motion of the electrons
increases and their directive motion decreases which
decreases the current strength t.e., increases the resistance.

3. Do you know of any substance whose resistance decreases with
temperature?

See discussion (iv). .

4. Is the temperature co-efficient for metal is the same for all
temperatures?

No. Its value is different at different temperatures and hence a
mean temperature co-efficient is taken within a range.

5. What is the most Important application of the vartation of
resistance with temperature?

Variation of resistance of platinum with temperature is utilised
in measuring the temperature within a long range.

6. What (s the best arrangement for measuring the resistance of a
wire at different temperatures?

Callender and Griffiths bridge is the best arrangement to
measure the resistance of a given wire at various temperatures.

7. Why should the wire be wound non-inductively?

To avoid the effect of induced current.

8. Why do you use alloys such as manganin and constantan for the
construction of standard reststances?

For these alloys, there is no change in resistance with the
change of temperature within a certain range.
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